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ABSTRACT

This dissertation is concerned with the design and analysis of algorithms that

address two related issues in communication networks, namely erasures and

broadcast. Erasures are an appropriate model for communication channels

from a network layer perspective. A class of efficient and flexible codes known

as fountain codes, is available to deal with erasures for the basic erasure

channel. However, in the network applications that we consider, it remains

a challenging problem to design efficient and scalable codes. For an erasure

code, the efficiency of encoding and decoding algorithms is distinct from the

efficiency of reconstructing erased code symbols from other code symbols,

which is of importance in storage applications. In our work, we propose

new codes together with algorithms to efficiently repair lost code symbols,

simultaneously with low encoding and decoding complexities. Our work on

codes for storage also leads us to systematic fountain codes with improved

complexity. We also study the design and analysis of degree distributions

for fountain codes when the receivers have side information, and we provide

upper and lower bounds on the overhead. In a network with multiple hops

from the source, we construct a code to import the one-hop traits of LT codes

end-to-end using an idea based on online encoding, which is also one of the

components of the repair algorithm for storage codes that we propose.

We then consider wireless erasure networks, where local broadcast is an-

other property which influences the role of coding beyond that of merely

dealing with erasures. We show that feedback signaling is a critical factor

that defines the role of coding in this situation, in the sense that it is one

way to avoid the extensive feedback signaling that is necessary for routing

policies. To characterize this more precisely, we consider a formal notion of

restricted feedback signaling and derive the throughput of routing policies

with restricted feedback on a two-hop network. This allows us to obtain a

lower bound on the throughput when the losses are independent, and also
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to show that it is possible to have arbitrary degradation of throughput with

dependent losses.

Finally, we consider optimization problems involving the control of a queue

whose server is defined by the broadcast property, where each service satis-

fies all the customers simultaneously. Customers in the queue incur holding

costs. We consider two constraints on the server and derive the associated

optimal controls. For the first constraint, a constant non-negative cost is

charged per service whereas in the second type, we consider an online run-

ning constraint on the ability to operate the broadcast server. To address

this, we solve a more general problem called the online knapsack problem

where one needs to choose a sequence of actions over time, with each action

incurring a stochastic cost and also consuming a resource, which is replen-

ished stochastically over time with a given rate. The objective is to minimize

the total cost subject to the constraint of not exhausting the resource at any

point. We derive a limiting characterization of the optimal policy by show-

ing the convergence of the scaled value function to that of a continuous time

problem when the discount factor vanishes. In other words, this provides a

method to approximate such problems when the discount factor is effective

over a long duration and consequently, the magnitude of transactions in each

time slot vanishes in comparison to the long-term utility.
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CHAPTER 1

INTRODUCTION

An erasure refers to an event where any symbol that is intended to convey

information (in the form of a transmission over a communication channel,

or alternately, stored in a memory unit) is lost. A communications channel

consists of an input alphabet and an output alphabet. In general, errors

can happen in arbitrary ways transforming any input symbol to any output

symbol. The erasure channel represents one specific model of this channel

where input to output symbol transformations have a special one-way struc-

ture. More precisely, let A be the input alphabet to this channel. The output

alphabet consists of A
⋃
{×}, i.e. it has exactly one additional character, ×,

also called the erasure symbol. The errors are one-way, in the sense that the

only possible transformation of an input symbol to output symbol that does

not faithfully represent what was transmitted is by way of the input symbol

being converted into the special erasure symbol, × [1–3]. At a low enough

level, this model is not an accurate representation of a communications chan-

nel because errors need not have this special one-way structure. However, at

an abstraction relevant to the network layer, where messages are represented

in terms of packets, this kind of a channel model is most accurate from an

operational point of view.

Arguably, the erasure channel is the simplest nontrivial communication

channel. However, the relative simplicity of the erasure channel as opposed

to more difficult channels, comes with a commensurately higher bar for the

codes designed for this channel, with regards to their rate optimality, flexi-

bility and also the efficiency of the associated algorithms. Presumably due

to the increased relevance of this channel model due to the proliferation of

networks, there has been a seminal body of work that introduced paradigms

for code designs that are very versatile, rate optimal and highly efficient

at encoding/decoding [4–8]; in addition, they have also enjoyed significant

practical success [9,10]. When compared to other channels, one may compar-
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atively see the erasure channel as a solved problem due to their optimality on

basic metrics like ratelessness, overhead optimality and encoding/decoding

complexity. Nevertheless, various evolving network applications provide a

rich source of important and challenging issues that remain to be addressed

which fundamentally involve dealing with erasures. This is the primary mo-

tivation and a starting point for this dissertation.

Broadcast refers to an abstraction derived from the wireless transmission

model, where a single transmission can potentially address a group of clients.

Although this is ubiquitous in any wireless transmission, the way most prac-

tical systems deal with this is essentially by ignoring it. The protocol model,

which is also the basis for much theoretical work utilizes a graph based model

in which local broadcast is essentially treated as interference (e.g. [11–14]).

In reality, local broadcast represents a diversity gain associated with the

channel that could be exploited by either a well-adapted routing scheme or

by network coding. In general, coding in the network has two distinct roles

in the absence of this local broadcast feature. The first arises from the fact

that even without any errors/losses, information flow is fundamentally dif-

ferent from commodity flow, an aspect that points to the field of network

coding [15], starting with the pioneering work of [16]. In wireline settings,

network coding addresses strictly more general settings than that of a unicast

transmission. On the other hand, forward error correction (FEC) addresses

another aspect that stems from lossy transmissions. The role of coding in

the context of wireless broadcast is something that needs to be distinguished

from the previous two concerns, which are relatively better understood. No-

tably, in this context, the actual performance of optimal coding schemes is

better articulated than are the limits of routing policies, both with and with-

out restrictions on feedback signaling. This creates an avenue to discuss the

role of coding by way of a better understanding about the limits of optimal

routing schemes and then contrast it with optimal coding schemes.

The broadcast property also motivates us to study a very basic queu-

ing model, with the defining property that the service time is completely

disconnected from the actual number of customers awaiting the said ser-

vice/broadcast. In such a model, the number of customers is repeatedly reset

to zero every time the broadcast service is rendered. Two alternate views

of this situation lead to two different types of Markov decision problems

(MDP) in which decisions have to be repeatedly made on how aggressively
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the server needs to be operated so as to optimize certain customer holding

costs over an infinite horizon. In the first viewpoint, we consider a completely

observable system, where the decision maker can fine tune the broadcast rate,

after observing the exact number of customers in the system at each given

time. However, the broadcast constraint is kept simple in this setting with

each service being charged a fixed non-negative cost at any time. The chal-

lenge here mainly stems from the holding cost structure, in which we tackle

non-monotone convex holding costs on the customer state space. From the

alternate viewpoint, we consider a less responsive decision maker, who only

decides the broadcast rate once per broadcast. Since the customers are reset

to zero each time the server makes its decision, this allows us to expand our

consideration to a more challenging cost/constraint structure on the service,

coupled across time. More precisely, we consider a resource, replenished at

a fixed rate, and consumed at a rate that depends on the actions taken by

the server. The server is constrained to operate subject to the availability

of the resource at any time. This is modeled in the form of a general class

of Markov decision problems on a continuous state space representing the

resource, which is replenished and consumed at each instant. Although the

general problem we address has nothing to do with broadcast as such, the

ability to fit the given broadcast model problem into the general framework

is based on the fact that the number of awaiting customers is reset to zero

for each individual decision instance. Techniques like repeated value iter-

ation to numerically estimate the value function for the continuous state

space problem involves issues with error propagation that compromise their

accuracy. These issues underscore the utility for an analytical procedure to

approximating the value function with an easy and efficient characterization.

1.1 Overview and Organization

In Chapter 2, we begin with consideration of storage systems in Section 2.3

and outline the primary obstacle that erasure codes face over replication de-

spite the large gains they offer with respect to redundancy. A metric of repair

complexity intended to capture the latency associated with repairing erased

code symbols is proposed in Section 2.3.1. In Sections 2.3.4 and 2.3.7, we

design codes that achieve order-optimal repair complexity while simultane-
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ously importing many efficient characteristics of conventional fountain codes.

Subsequently, one of these constructions also leads to a new solution to the

problem of designing efficient systematic rateless codes, as seen in Section

2.4.1. This construction offers an order reduction in the encoding complexity

for systematic raptor codes compared to the state of the art, at the expense

of a minimal loss in overhead. These sections of the Chapter are the basis

for a paper, [17], under submission. We then explore the design of fountain

codes for a side information problem with incomplete information at the en-

coder in Section 2.5.1 and provide upper and lower bounds on the overhead

along with an alternate solution that can exploit the newly constructed sys-

tematic raptor codes of Section 2.4. This part of the chapter is based on the

paper [18]. We then consider the problem of broadcasting a fountain code

over multiple hops without having to decode and re-encode the entire source

message at each intermediate hop in Section 2.6. We propose a construction

that simulates the characteristics of an LT code for single hop on an end-to-

end level and also provide an analysis that justifies this construction. The

final section is based on the paper [19].

In Chapter 3, we study a wireless erasure network model with a focus on

understanding the role of coding in dealing with the local broadcast prop-

erty of the wireless medium. Even without erasures and in wireline networks,

network coding has an essential role for general multicast problems. In order

to separate out this aspect from local broadcast, we focus on the case of

wireless unicast. In the absence of constraints on feedback signaling, it is

argued that coding has no role in achieving the capacity for wireless unicast

due to a max-flow min-cut equivalence. To explore the issue of feedback

signaling further, we consider a two-hop network and formulate a notion of

restricted feedback signaling to reflect the constraint of routing packets with-

out dynamically exploiting information about packet losses on other links in

the neighborhood. We then characterize the throughput of the model under

the restricted feedback signaling constraint. Using this characterization, we

obtain a lower bound on the loss in throughput in the case of independent

erasures across different links. Finally, it is shown that this independence

assumption is critical by providing a counterexample with unbounded degra-

dation of throughput in case of dependent losses. This chapter is based on

the paper, [20]

In Chapter 4, we introduce a queuing model called the broadcast queu-
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ing model, in which each service to the queue clears all the customers. We

study control of the server to optimize the infinite horizon discounted hold-

ing cost of customers in the queue subject to two types of constraints on the

server. From the first constraint, we charge a fixed cost for each broadcast

of the server, considered in Section 4.4. The structure of the optimal control

is shown to be of the threshold type for any convex holding costs on the

customer queue. This material was published in [21]. For the second con-

straint, we consider an online constraint on operation of the server in Section

4.5. The server is associated with a resource queue which has a fixed rate

of arrivals. The broadcast server consumes this resource as fuel for its op-

eration, proportional to its rate of operation. To derive the optimal control

for this problem, we step back and study a more general problem in Section

4.6, which we call the generalized online knapsack problem. For this setting,

a discrete time system is considered where a resource balance process with

stochastic arrivals of a given rate evolves over time with departures defined

according to the control actions chosen at each time. The control actions also

lead to a sequence of costs at each time. The goal is to optimize the infinite

horizon discounted cost subject to the maintaining a positive balance on the

resource queue at all times. For this problem, we derive a limiting character-

ization of the optimal value function when the discount factor goes to zero.

The value function as a function of the balance becomes unbounded when

the discount factor tends to zero, but by scaling both the value and its argu-

ment appropriately with the discount factor, we identify its nontrivial limit

by showing convergence to a continuous time approximated system. We then

use this characterization to compute the value function and optimal control

for the corresponding broadcast server problem with an online constraint in

Section 4.6. A version of this result with focus on an alternate application

to dynamic auctions with budget constraints is in preparation [22].
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CHAPTER 2

FOUNTAIN CODES FOR STORAGE AND
BROADCAST APPLICATIONS

2.1 Introduction

In a network, when a packet is transmitted, the intended receiver is typi-

cally able to detect when the received packet is corrupted, in which case it

is meant to be discarded. Each packet is composed of a fixed number, l, of

bits. This represents an erasure channel, with an input alphabet of size 2l

corresponding to the total number of potential messages that can be stored

as a packet. In addition to these 2l possible elements, the output alphabet

has the erasure symbol, ×, representing a failed transmission. Upon passing

through the channel, each packet, equivalently also referred to as a symbol, is

either received in a form identical to that of the transmitted version, or trans-

formed into the erasure symbol, ×. Without any forward error-correction,

the receiver has to send an acknowledgment for each transmitted packet and

the sender has to retransmit each erased packet repeatedly until the trans-

mission is erasure-free. The feedback represents an overhead that can be

avoided: by using coding across packets, messages can be transmitted at the

maximum rate without the need for feedback. The erasure channel was first

introduced by Elias [23] where each symbol is erased independently with a

fixed probability, p. It was shown that the information theoretic capacity of

this channel is 1− p and that a random linear code could be used to trans-

mit at any rate up to the capacity. Another classical block coding approach

involves Reed-Solomon codes [3, 24], in which k of the message packets are

coded together to produce n coded packets. A Reed-Solomon code is optimal

with respect to storage redundancy: i.e., any k coded packets from among

the n are sufficient to decode the original k source packets, which is obviously

optimal in this regard. The operations performed by a Reed-Solomon code

to achieve this are in the q−ary field with q = 2l > N , which represents
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the total number of possible l-bit sequences that constitute a distinct packet.

However, standard implementations have an encoding/decoding complexity

of order k(n− k) log n packet operations, which is inefficient. More recently,

researchers have designed codes to improve on the encoding/decoding effi-

ciency of erasure codes, while maintaining the optimality with respect to

redundancy. Alon and Luby [25] designed codes with encoding/decoding

complexity O(n ln(1/ε)/ε) while achieving a rate which is order ε from the ca-

pacity. The encoding/decoding complexity was improved to O(n ln(1/ε)) for

a similar overhead guarantee by using a design based on sparse graph codes

by Luby et al. [26]. More generally, constructions based on sparse graphs

and iterative decoding have also been critical in designing efficient codes for

other channels, originally pioneered by Gallager [27] and further developed

in relatively more recent work such as [28–32]. (See [33] for a comprehensive

introduction.) For the erasure channel, the constructions in [26, 34] provide

highly efficient encoding and decoding algorithms in the asymptotic regime

of large block length; however, an important limitation of all the aforemen-

tioned designs is that the encoder needs to have an estimate of the channel

erasure probability for designing the code. In other words, the parameters

n and k need to be known beforehand to compute the code. If it turns out

that more than n code symbols are necessary, or that fewer than n are nec-

essary, the code cannot be extended by computing new symbols or trimmed

by deleting some of the computed symbols on-the-fly.

In many practical settings, the sender may not be able to estimate the

channel erasure probability. Even when estimation is not a problem, it is de-

sirable in broadcast settings with heterogeneous receivers for the same code

to simultaneously transmit at rates close to the respective capacities of vari-

ous receivers. A code that can accomplish this is said to be rateless because

its throughput guarantees can be made without conditioning on the channel

characteristics. The concept of rateless/fountain codes was developed [4–8]

to achieve efficient encoding/decoding along with optimal overhead without

requiring a fixed rate for design a priori; this paradigm has enjoyed remark-

able success even in terms of practical use [9, 10]. A rateless encoder is able

to generate an endless stream of random code symbols, which is the basis for

the eponym, fountain code. The decoding guarantees are conditioned on the

total number of symbols that a receiver collects. Each receiver, depending

on its channel, can adaptively wait until it has enough symbols to decode.
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Although their guarantees are primarily intended for the erasure channel,

variants can also be applied to other channels [35,36].

Consider a message divided into a sequence of packets, called source sym-

bols. Each symbol comes from an alphabet of size q = 2l, which corresponds

to packets composed of l bits. A convenient feature of fountain codes is that

the alphabet size has no lower bound and can even be binary for simplicity,

i.e. l = 1. Fountain codes are designed for the asymptotic case where the

interest is in codes designed for use on a large number, k, of source sym-

bols, typically of the order of thousands, for practical effectiveness. The

block length refers to k, the number of source symbols that constitute the

message.1 The code symbols are defined through binary addition (XOR) of

subsets of source symbols. These subsets are random; therefore each code

symbol represents a random variable that indicates the subset of source sym-

bols XOR-ed to form the code symbol. They are independent and identically

distributed (i.i.d.), and the source symbol indices forming code symbols are

uniformly distributed over {1, . . . , k}. In the case of LT codes, the degree

of a given code symbol is the number of source symbols that are XOR-ed

to compute the code symbol. The average degree, which is the average of

the expected degree of the individual code symbols, is a measure of the per-

symbol encoding complexity of a (random) code. Unless otherwise stated,

we typically measure encoding/decoding complexity in per-symbol units in

this chapter. The code is associated with a degree distribution, which is the

probability distribution for the number of source symbols XOR-ed in each

(i.i.d.) code symbol. An important feature of the LT code is the use of an

iterative decoder, whose success is probabilistic. Note that if a code sym-

bol has degree one, it can be processed to decode the source symbol that it

represents. At each iteration, the LT decoder operates by identifying a code

symbol of degree one, and then uses it to reduce the degree of other code

symbols, thereby possibly increasing the population of degree one symbols

that could be processed during the next iteration. If the decoder does not

run out of degree one symbols till the end, then the decoding process suc-

ceeds. For a large enough k and for any δ > 0, Luby [6] proposed a degree

distribution, called the robust soliton distribution, which ensures this event

with probability at least 1 − δ, when starting with any set of k + o(k) code

1In other contexts, block length usually refers to n, the number of code symbols that
form the code, but this is not of relevance here because of the rateless nature of the codes.
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symbols, where o(k) is a term of order roughly equal to
√
k ln2 k

δ
. The average

degree for this distribution is of the order O(log k). The analysis for the case

of non asymptotic block length has also been studied by Karp et al. [37].

The set of all code symbols of reduced degree one that have not yet been

decoded (because they have not been processed yet) is called the gross rip-

ple, using the terminology from [38]. For any given degree distribution, the

asymptotic limit of the evolution of the gross ripple over the decoding process

was characterized by Darling and Norris [39] using a Poisson approximation

for the number of coded symbols. The size of the gross ripple changes due

to three reasons during each iteration of decoding: (1) A symbol is removed

to be processed from the gross ripple. (2) Duplicate symbols correspond-

ing to the processed symbol from the gross ripple are eliminated. (3) New

symbols with reduced degree one appear because of subtracting the pro-

cessed symbol. This process specifies an ODE for the fluid limit of the

gross ripple, xt, where t ∈ [0, 1] is the fraction of source symbols decoded

at any given point. This ordinary differential equation (ODE) is given by

ẋt = −1 − xt
1−t + (1 − t)rΩ′′(t) with initial condition x0 = rΩ′(0), where the

three terms in the ODE correspond to the three factors in the stated order.

The solution can be written as xt = (1 − t)(rΩ′(t) + log(1 − t)). From this,

the fraction of source symbols recovered asymptotically can be calculated as

the point at which the gross ripple process reaches zero, which is given by

inf{t ≥ 0 : rΩ′(t) + log(1− t) < 0}.2

The equation for the fluid limit suggests more flexibility for designing the

degree distribution if the requirement of complete recovery is loosened to

near-complete recovery. Shokrollahi proposed raptor codes [7],3 which ex-

ploit this property to result in a much better encoding/decoding complexity

compared to LT codes. A truncated version of the soliton distribution can

be used with a constant per symbol encoding/decoding complexity, while

providing near complete recovery. To avoid this problem, raptor codes use a

high rate precode, which transforms the source symbols to a set of interme-

diate symbols, which are then encoded by the designed degree distribution.

The source symbols can now be decoded even when a small fraction of the

2This statement assumes that the trajectory does not touch zero before crossing it, in
which case the characterization is more subtle.

3This is independent from the work of Darling and Norris, whose connections to coding
were published by Maneva and Shokrollahi in [40].
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intermediate symbols are left undecoded by the LT/iterative decoder.

To summarize the critical aspects that make fountain codes useful in prac-

tice, we have:

1. Ratelessness: This refers to the property that the code symbol gen-

erated does not depend on the total number of symbols that constitute

the code. In other words, the number of code symbols can be arbitrary

and does not have to be specified for the encoder a priori. For decod-

ing, one needs to collect a sufficient number of these code symbols and

this guarantee is independent of the actual channel.

2. Encoding/Decoding Complexity: Raptor codes have (per-symbol)

encoding/decoding complexities that do not scale with the block length.

Since the guarantees provided are asymptotic in k, this property is quite

important for scalability in terms of complexity. LT codes in contrast

have a complexity of O(log k) per symbol.

3. Overhead: Overhead refers to the smallest δ > 0 such that any k(1 +

δ) code symbols are sufficient to decode the k code symbols. This

can be made arbitrarily small by designing the degree distributions

appropriately.4

The scenarios addressed in this chapter have constraints in addition to

the above three basic concerns. The first of these considers the use of era-

sure codes in storage systems. In addition to encoding/decoding complexity,

overhead and the rateless property, an additional concern involves the latency

associated with reconstructing the erased subset of code symbols from other

non-erased code symbols, rather than directly from source symbols, as in the

process of encoding. The requirement of encoding code symbols from other

subsets of code symbols is closely related to the notion of locally decodable

codes [41]. However, the primary concerns of our work, which differs from

the setup of [41], are two fold: (1) we are interested in codes that work specif-

ically for the erasure channel, and (2) we are interested in rateless designs.

In addition, the use of network codes specifically for storage applications has

been a vibrant research topic in recent past (e.g. [42–59]). We comment on

the distinctions of our problem with the repair bandwidth considerations in

4In traditional coding theory terminology, this is also called the maximum distance
separable (MDS) property.
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Section 2.3.2. To the best of our knowledge, our constructions provide the

first designs that provide guarantees on the repair complexity notion con-

sidered, and therefore set a benchmark for further research to improve the

considered metrics. Another variant of the original problem that we address

in this thesis involves the design of systematic versions of fountain codes, for

which the state of the art construction has an encoding complexity that is

much worse than the complexity without the systematic requirement. We

propose constructions to address this issue by way of achieving a minimal

tradeoff with the overhead. We then consider the problem of adapting foun-

tain codes when the receivers already possess a subset of the data as side

information. It turns out that the degree distributions optimized for the

original problem without any side information are not well applicable to this

variant; however, modified degree distributions based on the extent of side

information available can do much better. Yet another application we con-

sider involves the design of a rateless code that broadcasts to receivers over

multiple hops without having to decode and re-encode at every step. This

requires some novel constructions to ensure that intermediate nodes can start

producing coded symbols while waiting to receive a full set to decode.

2.2 Contributions and Organization

The contributions made in this chapter are listed below:

• Efficient repair for storage applications: Typically, scalability of

codes is reflected in their encoding/decoding complexity. In storage

systems, however, one has an additional constraint due to the need

to dynamically repair the erased code symbols without having to de-

code the entire source message each time a failure occurs. In this

chapter, we first propose a definition of repair complexity that can be

used to capture this notion in Section 2.3.1. We then illustrate with

examples in Section 2.3.3 why common codes provide either optimal

(constant) repair complexity with arbitrarily bad overhead (repetition

coding) or, alternatively, optimal overhead with no better than a linear

per symbol repair complexity. We then propose the first constructions

of codes along with the repair algorithms that ensure an efficient repair

property, based on a variant of the standard raptor/fountain code in
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Sections 2.3.4, 2.3.7. With our new constructions, we provide a means

to effectively achieve useful non-extreme points on the tradeoff curve

between repair complexity and overhead.

• Systematic fountain codes with efficient encoding/decoding:

A systematic code has the defining property that the uncoded source

symbols appear as a subset of the coded symbols. The many practical

reasons for its utility are motivated in [7]. Shokrollahi also gave a

construction that modifies a raptor code into a systematic version in [7].

However, this construction involves a step during encoding which has

linear complexity per symbol. In Section 2.4, we propose a new method

to construct systematic fountain codes based on the results of Section

2.3. This provides a technique to avoid the linear encoding complexity

of systematic raptor codes by taking on a negligible sub-optimality in

terms of the overhead.

• Broadcasting with side information among receivers: We con-

sider the problem of broadcasting to an audience of receivers when the

receivers are in possession of unknown subsets of the source data as side

information. The perfect information version of this problem is called

index coding, which has been shown to be equivalent to an intractable

rank minimization problem. We study the analysis and design of foun-

tain codes for this problem with corresponding guarantees and lower

bounds on the optimal code. We then also propose a solution based on

systematic fountain codes that avoids the lower bound, which in turn

can be obtained from Section 2.4. The use of fountain codes for the

side information problem with incomplete information has also been

considered by multiple independent works [60, 61], but to the best of

our knowledge, our work is the first to provide results involving explicit

bounds on the overhead.

• Broadcasting a fountain code over multiple hops: Coding in an

erasure network while treating each link as point-to-point involves de-

coding and re-encoding entire message blocks at each node. This is not

a scalable solution, especially in the case of fountain code, which re-

quires relatively large block lengths for effectiveness. In Section 2.6, we

devise a scheme that imitates the characteristics of a fountain code end-
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to-end across multiple hops, without having to decode and re-encode

at every step.

2.3 Fountain Codes for Repair in Storage Problems

While the benefits of erasure coding for storage are well understood with

regard to the savings on the number of storage units for a given level of

redundancy, other important aspects that favor replication as opposed to

coding are not as well understood. The most significant of these issues [62] is

the latency related to recovery from failures. Another related issue that has

been pointed out is the large state dependency metric, which refers to the

need to contact a potentially large number of servers/storage units for each

recovery. An efficient decoding/encoding algorithm does not, by itself, pro-

vide an efficient recovery algorithm because decoding efficiency in the context

of codes designed for communication has a basic assumption of recovering

the entire message block.

Even though the storage gains of coding over replication are extremely

large (by a factor that scales with the number of message blocks being coded),

storage cost itself could be less important than other factors like repair la-

tency. As long as a code delivers the order of magnitude level improvements

related to storage over replication, the need for strict information theoretic

optimality of storage overhead of the code is less significant than the ability

to repair destroyed code symbols efficiently.

Another issue where fixed rate code designs face an obstacle unlike repli-

cation is related to the flexibility of adding or deleting storage units dynam-

ically [63]. When a code is designed with a fixed rate beforehand, adding

or deleting code symbols no longer keeps the guarantees that were provided

for the original design. Modern data centers use a large number of commod-

ity components that are less reliable than customized hardware to achieve

reliability [62].

2.3.1 Repair Complexity

The repair complexity of a code refers to the complexity of operations re-

quired to reconstruct subsets of its code symbols using other code symbols.
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More precisely, let C be an erasure code with its symbols indexed by inte-

gers from [n]. For some D ⊆ [n] (that is destroyed) and another (disjoint)

subset R ⊆ [n] (the recovery set), a repair algorithm then reconstructs the

code symbols indexed in D using those from R, when feasible. Typically, one

may consider R = [n]/D. The repair complexity for a given reconstruction

instance is then defined to be the average (over the symbols in D) number

of symbol operations performed by the repair algorithm.

R(D) =
# of symbol operations in repairing D

|D|
(2.1)

A code on source data divided into k symbols is said to have an overhead δ

if one has the guarantee that any k(1+δ) code symbols are sufficient to recon-

struct the source data. When δ = 0, we have an optimal code with respect

to its overhead. The ease of repair is closely related to the overhead. Loosely

speaking, the closer to optimal the overhead is, the harder it gets to repair

the code. This tradeoff has been investigated in prior work extensively for a

broadly related problem called the repair bandwidth minimization problem.

However, our work has some fundamental differences with this line of work

as explained below.

2.3.2 Distinction from the Bandwidth Minimization Problem

There has been substantial work on the problem of optimizing the repair

bandwidth against the overhead (e.g. [42, 43] and the references therein).

There are, however, two fundamental differences with the notion of repair

complexity considered here. (1) In this dissertation, we consider a code sym-

bol as a single atomic unit of memory which can not be split further. In [42],

each node stores data that can be split into subunits and the goal is to

optimize the bandwidth across the nodes. In other words, any operational

complexity within a node is not a part of the optimization. (2) Our goal of

optimizing the number of symbol operations required for reconstruction is

more closely aligned to disk access than the bandwidth communicated across

nodes itself. For bandwidth optimization [42], the codes designed are ex-

pected to download minuscule uniform amounts of compressed/coded data

from each node over a large number of nodes to save on the final bandwidth,

whereas the total number of symbol operations performed prior to commu-
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nication could be quite expensive due to large number of symbols accessed.

2.3.3 Repair Complexity of Examples

1. Parity Code: A parity code of dimension k is {v ∈ {0, 1}k+1 : vk+1 =∑k
i=1 vi}. Let D = {i} for some i ∈ [k + 1] and R = {[k + 1]/D}.

The repair is performed by the relation vi =
∑

j 6=i vj, which involves k

symbol operations. So the repair complexity is k.

2. Repetition Code: Let the code be {v ∈ {0, 1}kl : v = [v∗ v∗ . . . v∗︸ ︷︷ ︸
l times

]}

for some v∗ ∈ {0, 1}k. Let D ⊆ [kl] such that the number of indices in

D which are equivalent modulo k is at most l−1. To repair D, we need

to perform at most |D| symbol operations in copying the corresponding

symbol from R, implying a repair complexity of 1. But the overhead

for this code is δ = l k−1
k

+ 1
k
−1, which is arbitrarily bad for large values

of l.

3. Rateless Codes - Random Linear Codes (RLC), LT Codes,

Raptor Codes: Consider a rateless code with dimension k, i.e. the

source message consists of k symbols whose encoding/decoding com-

plexities are on average α and β per symbol respectively and the

overhead is δ. For RLC, α = β = θ(k), δ = o(k); for LT codes,

α = β = O(log k), δ = o(k); and for raptor codes, α = β = O(1)

and δ = ε, a small positive number. Consider a recovery set R with

|R| = k(1 + δ). A natural repair algorithm is: (1) Decode the source

symbols, S from R. (2) Encode the missing code symbols D using S.

Under the given assumptions, step 1 incurs βk symbol operations and

step 2 incurs α|D| symbol operations. Therefore, the repair complexity

for D is:
βk + α|D|
|D|

= β
k

|D|
+ α

This could be efficient if |D| ≈ k, but when D is small, even con-

stant encoding/decoding complexities do not provide a corresponding

efficient repair guarantee.

The examples above represent extremes on the repair complexity/overhead

tradeoff. In what follows, we will propose new code designs to achieve other

15



non-extreme points on this tradeoff.

2.3.4 The Augmented LT Code

We now propose the augmented LT code, which includes the source data

concatenated with degree distribution based code symbols. Formally, let

S = {s1, . . . , sk} represent the data to be stored, divided into fragments

which are also called source symbols. Let c1, c2, . . . represent an LT coded

stream generated on S with degree distribution Ω on [k]. The augmented LT

code is defined as the rateless code formed by adjoining the uncoded source

symbols to the LT coded stream, i.e. {s1, . . . , sk, c1, c2, . . .}.

2.3.5 Repair Algorithm for the Augmented LT Code

Let D be the set of indices of the code symbols to be repaired and R be a

recovery set. Let RC = R
⋂
{c1, c2, . . .} and RS = R

⋂
S (so R = RC

⋃
RS).

Let |D| = t and denote DS = D
⋂
S and DC = D/S = D

⋂
{c1, . . .}.

Consider the case when |RC | ≥ k(1 + ε) where ε > 0 and k is large. The

repair algorithm for D from R is given below.

1. Since |RC | ≥ k(1 + ε), w.h.p. it is feasible to iteratively decode S from

RC . Let sπ(1), sπ(2), . . . sπ(k) be a sequence in which the source symbols

could be decoded from RC . Let cξ(1), . . . , cξ(k) be the corresponding

sequence in which code symbols from RC are processed from the gross

ripple during the decoding process. π and ξ can be computed without

performing any symbol operations by processing the packet headers or

the random number seed generator used for the code construction. We

have:

sπ(i) = cξ(i) ⊕
∑
j∈Si

sj (2.2)

where Si ⊆ {π(1), . . . , π(i− 1)} and |Si| = deg(cξ(i))− 1.

2. Repair symbols from DS in the order of their appearance in π, using

Equation (2.2). To rephrase, recover the symbols in DS in the sequence

(sπ(i1), sπ(i2), . . . , sπ(it)) where i1, . . . , it are ascending. This is feasible
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because for each i, the entire set Si would have been repaired by the

time it is used in Equation (2.2).

3. Recover DC by a standard Ω-degree distribution encoder.

2.3.6 Properties of the Augmented LT Code

Lemma 1. The expected repair complexity for arbitrary sets D is at most

(1 + ε)Ω′(1) while the overhead δ is at most 1 + ε.

Proof of Lemma 1. Let |DS| = t. The number of symbol operations in restor-

ing sπ(i) is equal to deg(cξ(i)) from Equation 2.2. Since the sequence π is uni-

form over all possibilities when averaged over the randomness of the code,

cξ(i1), . . . , cξ(it) has to be a uniform subset from cξ(1), . . . , cξ(k), which are them-

selves a subset of the set c1, . . . , ck(1+ε). Therefore,

E
t∑

j=1

[deg(cξ(ij))] = tE[deg(cξ(i1))]

=
t

k

k∑
j=1

E[deg(cξ(j))]

≤ t

k

k(1+ε)∑
j=1

E[deg(cj)]

= t(1 + ε)Ω′(1)

The number of symbol operations in the rest of the reconstruction is |DC |Ω′(1).

Therefore, the repair complexity is at most

t(1 + ε)Ω′(1) + |DC |Ω′(1)

t+ |DC |
≤ (1 + ε)Ω′(1)

The overhead of the augmented LT code is δ ≤ 1 + ε because any set of

2 + ε surviving symbols ensures at least 1 + ε surviving symbols from the set

{c1, c2, . . .}, using which iterative decodability is guaranteed.

The overhead is suboptimal for the above code, but it achieves a tradeoff

between the extremes of bad repair complexity and bad overhead. To further

reduce the overhead achieved with the augmented LT code, we next propose

another design called the augmented raptor code.
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2.3.7 Augmented Raptor Codes

Let ε > 0 be small. Consider a (high rate) precode with code symbols

SI = {s1, . . . , sk(1+ε)} such that any subset of k symbols from SI can recover

the message. Let Ω be a degree distribution on [k(1 + ε)]. Let c1, c2, . . .

be a fountain coded stream generated by using Ω on SI . The augmented

raptor code is defined as the rateless code formed by adjoining SI to this

fountain coded stream, i.e. {s1, . . . , sk(1+ε), c1, c2, . . .}. The next section is on

the overhead properties of this code, which is necessary for establishing the

repair complexity claims.

2.3.8 Overhead Properties of Augmented Raptor Codes

Overhead is the smallest δ > 0 such that an arbitrary set, R, of k(1+δ) code

symbols can recover the source symbols. We first briefly recall the recovery

constraint implied by [26,39]. See also Section 2.5.1 for more details.

Proposition 2. [26, 39] A total of rk Ω-coded symbols on k input symbols

can be used to decode θk input symbols by iterative decoding if (for large k

and w.h.p.)

rΩ′(t) + log(1− t) > 0 ∀ t ∈ (0, θ)

Let RC , R
⋂
{c1, c2, . . .} and RS , R

⋂
SI = R/RC . Since |R| = k(1+δ),

let |RC | = k(1 + δ)α and |RS| = k(1 + δ)(1−α) for some α ∈ [0, 1]. We have

|SI/RS| = k(1 + ε)− k(1 + δ)(1− α)

= k(α(1 + δ)− (δ − ε))

Define:

λ ,
|SI/RS|
|SI |

(2.3)

=
α(1 + δ)− (δ − ε)

1 + ε
(2.4)

The projected code: Since the code symbols from RS are essentially

decoded to begin with, it is useful to view the code symbols from RC as
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being generated by a degree distribution, Ψ(x), on SI/RS. The “projected

code” has k(1 + δ)α code symbols with degree distribution Ψ on a set of

|SI/RS| = k(α(1 + δ)− (δ− ε)) input symbols. Since the degree distribution

of the code symbols in RC with respect to SI is Ω(x), the degree distribution

projected onto SI/RS is given by Ψ(x) , Ω(1 − λ + λx) (see Corollary 5).

Denote

f =
δ

ε
− 1 (2.5)

and

M =
1

ε
+ 1 (2.6)

A sufficient condition for recovery is to decode at least k total symbols from

SI . This translates to a recovery requirement of k−|RS| = k(1−(1+δ)(1−α)

symbols. A sufficient condition for recovery can be obtained by expressing

the recovery requirement and overhead available as fractions of the number

of input symbols (|SI/RS|) for the projected code. These are:

Recovery fraction requirement:

1− (1 + δ)(1− α)

α(1 + δ)− (δ − ε)
= 1− 1

Mλ

Code symbols fraction available:

(1 + δ)α

α(1 + δ)− (δ − ε)
= 1 +

f

Mλ

The recovery constraint (Proposition 2) now becomes:

∀λ ∈
(

1

M
, 1

)
,

(
1 +

f

Mλ

)
Ψ′(t) + log(1− t) > 0 ∀ t ∈

(
0, 1− 1

Mλ

)
(2.7)

Note that f maps to an overhead δ = f+1
M−1

by Equations (2.5) and (2.6).

To rephrase, we are therefore interested in the smallest f > 0, for which we

can design Ω satisfying the following constraint:

∀λ ∈
(

1

M
, 1

)
,
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(
λ+

f

M

)
Ω′(1− λ+ λt) + log (1− t) > 0 ∀ t ∈

(
0, 1− 1

Mλ

)
(2.8)

Let Ω(t) =
∑

i pit
i. Since 1−λ+λt ≤ 1

M
∀t ∈

(
0, 1− 1

λM

)
, it follows that

i(1 − λ + λt)i is dominated by M(1 − λ + λt)M ∀ i > M . So it suffices

to restrict attention to degree distributions with pi = 0 ∀ i > M to search

over distributions to minimize f . Given P , any probability distribution with

support on integers less than M and λ ∈ ( 1
M
, 1) and t ∈ (0, 1− 1

Mλ
), define:

D(M,P , λ, t) , M

M − 1

(
− log (1− t)∑M

i=1 i(1− λ+ λt)i−1pi
− λ

)
+

1

M − 1
(2.9)

Then, we can achieve an overhead δ that is arbitrarily close to δopt defined

as:

δopt = inf
M>1
P

sup
λ∈( 1

M
,1)

t∈(0,1− 1
Mλ

)

D(M,P , λ, t) (2.10)

It will also be useful to consider the “overhead profile” for each fixed degree

distribution (P) and precode (M), which is the overhead that is necessary

as a function of λ. More precisely, let:

δ(λ,P ,M) , sup
t∈(0,1− 1

Mλ
)

D(M,P , λ, t) (2.11)

Although the overhead of a given design is captured by supλ∈( 1
M
,1) δ(λ,P ,M),

it will be of interest to consider the entire profile as a function of λ if we

need to optimize the design with assumptions on λ (which translates to as-

sumptions on the relative composition of the recovery set between SI and

{c1, c2, . . .}, captured by the parameter α ∈ [0, 1]).

Theorem 3. Let µ > 0 and D > M . Let Ω be the same distribution as used

in raptor codes [7]:

Ω(x) =
1

µ+ 1

(
µx+

D∑
i=1

xi

i(i− 1)
+
xD+1

D

)
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Then, we have the following upper bound on the overhead profile:

δ(λ,Ω,M) <
1

M − 1
+

M

M − 1

(
(1 + µ) log (Mλ)

µ+ logM
− λ
)

(2.12)

Proof of Theorem 3.

Ω(x) =
1

µ+ 1

(
µx+

D∑
i=1

xi

i(i− 1)
+
xD+1

D

)
(2.13)

Ω′(x) =
1

µ+ 1

(
µ− log (1− x) + xD −

∞∑
d=D+1

xd

d

)

(µ+ 1)Ω′(1− λ+ λx) = µ− log λ− log (1− x)+

+(1− λ+ λx)D −
∞∑

d=D+1

(1− λ+ λx)d

d

First consider the following lower bound on one of the terms:

(1− λ+ λx)D −
∞∑

d=D+1

(1− λ+ λx)d

d

= (1− λ+ λx)D

(
1−

∞∑
D+1

(1− λ+ λx)d−D

d

)

≥ (1− λ+ λx)D

(
1− 1

D + 1

∞∑
t=1

(1− λ+ λx)t

)

= (1− λ+ λx)D
(

1− 1− λ+ λx

(D + 1)λ(1− x)

)
= (1− λ+ λx)D

(
1 +

1

D + 1
− 1

(D + 1)λ(1− x)

)
≥ (1− λ+ λx)D

(
1− M

D

)
∵ x ∈

(
0, 1− 1

Mλ

)
The sufficient condition becomes

∀ λ ∈
(

1

M
, 1

)
, ∀ x ∈

(
0, 1− 1

Mλ

)
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(
λ+

f

M

)(
µ− log λ− log (1− x) + (1− λ+ λx)D

(
1− M

D

))
> −(1 + µ) log (1− x)

which is equivalent to:

µ+ (1− λ+ λx)D
(

1− M

D

)
> − log (1− x)

(
1 + µ

λ+ f
M

− 1

)
− log λ (2.14)

Both LHS and RHS are increasing in x, so this would be implied (although

this could be far from being necessary) by choosing D ≥M in what follows:

µ > log (Mλ)

(
1 + µ

λ+ f
M

− 1

)
− log λ (2.15)

which is equivalent to

µ+ logM > log (Mλ)
1 + µ

λ+ f
M

(2.16)

which is equivalent to

f

M
>

(1 + µ) log (Mλ)

µ+ logM
− λ (2.17)

Equivalently, this shows that the Ω specified above already achieves an over-

head profile δ(λ) equal to:

δ(λ) =
1

M − 1
+

M

M − 1

(
(1 + µ) log (Mλ)

µ+ logM
− λ
)

(2.18)

The actual overhead profile achieved will be strictly better than the bound

because of a gap between inequalities (2.14) and (2.15).

Figure 2.1 shows a plot of this bound corresponding to a specific choice of

the parameters.

We now revisit Equation (2.10) to numerically optimize the overhead. Con-

sider any M and δ∗ > 0. We see that an overhead δ = M
M−1

δ∗+ 1
M−1

is feasible

iff the following LP (with variables pi, i ∈ [M ]) has a feasible solution for
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Figure 2.1: A plot of the bound on overhead profile in Equation (2.12)
obtained for M = 20, µ = 0.001.
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some M .

∀λ ∈ (
1

M
, 1), t ∈ (0, 1− 1

Mλ
) (2.19)

(δ∗ + λ)
M∑
i=1

i(1− λ+ λt)i−1pi ≥ − log (1− t) (2.20)

M∑
i=1

pi = 1 and pi ≥ 0 ∀ 1 ≤ i ≤M (2.21)

We can approximate this system by choosing a fine grid for the parameters

λ, t to obtain an LP that has a finite number of constraints. This LP can be

solved to obtain a candidate degree distribution, whose overhead profile can

then be explicitly evaluated numerically using Equation (2.11) (which is, of

course, unconditional on the approximations made while obtaining the candi-

date degree distribution itself). Figure 2.2 is a plot of some feasible overhead

profiles obtained by optimizing the degree distributions while minimizing the

average degree on a support of M = 20.

We note from Figure 2.2 that it is possible to design degree distributions

on a support of M = 20 that provide an overhead guarantee of at most

than δ = 0.25 across all ranges of λ. The reason we plot green and red

curves in Figure 2.2 even though they have ranges of λ which perform worse

than the blue curve, is to show that it is possible to further optimize the

overhead guarantees, if one were to assume restrictions on λ. In Figure 2.2,

the green overhead profile was obtained for a distribution that was optimized

for λ ∈ (0, 0.5) whereas the red curve corresponds to λ ∈ (0, 0.2). Recall that

λ corresponds to the fraction of symbols in SI that need to be repaired. If,

for example, the designer is confident that the systematic part will never have

more than 50% of symbols destroyed, one may use the degree distribution

represented by the green curve in its design.

2.3.9 Repair Algorithm for Augmented Raptor Codes

Let D be the set of code symbols to be repaired and let R be a recovery

set. Let DS = D
⋂
SI and DC = D

⋂
{c1, . . .}. Let R = RS

⋃
RC where

RS = SI/DS and RC = R/RS. There are three steps: (1) Repair D∗ ⊆ DS

such that |DS/D
∗| < εk (if |DS| ≥ kε). This can be accomplished using
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Figure 2.2: A plot of three overhead profiles corresponding to three
different candidate degree distributions that were obtained by optimizing
the average degree over discretized versions of LP constraints (2.19). The
green and red profiles are for distributions that were specifically optimized
to minimize the maximum overhead attained for the ranges λ ∈ (0, 0.5) and
λ ∈ (0, 0.2) respectively.
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an iterative repair procedure similar to the augmented LT code. (2) Repair

DS/D
∗ using a repair algorithm for the precode. (3) Repair DC using an Ω-

degree distribution encoder.

To ensure that Step 1 is feasible, RC is assumed to be a set of random

code symbols (of the smallest size, for repair complexity claims) that assures

the recovery of at least k total symbols from SI w.h.p. This in turn depends

on the size of RS which determines the λ in Equation (2.4). Let δ(λ) denote

the overhead profile for the code used. We have:

|RC | = (1 + δ(λ))α (2.22)

2.3.10 Repair Complexity for Augmented Raptor Codes

To establish the repair complexity, we need to evaluate the number of symbol

operations involved in Step 1 while repairing D∗. Let δ(λ) be the overhead

profile for the given degree distribution (Section 2.3.8). The expected number

of symbol operations involved in the repair is at most Ω′(1)|RC |. Therefore,

the expected per symbol repair complexity while reconstructing D∗ is:

Ω′(1)|RC |
|D∗|

=
k(1 + δ(λ))α

k(1− (1 + δ(λ))(1− α))
(2.23)

=1 +
δ(λ)

(1 + δ(λ))α− δ(λ)
(2.24)

=1 +
M − 1

M

δ(λ)

λ− 1
M

using relations (2.4), (2.6) (2.25)

For example, using the bound at Equation (2.12) for the raptor code dis-

tribution Ω, we can now establish a constant bound on the repair complexity.

For any λ > 1
M

, we have the following claim on the derivative of the bound

on the overhead profile with respect to λ:

δ′(λ) =
M

M − 1

(
1 + µ

(µ+ logM)λ
− 1

)
≤ M

M − 1

(
(1 + µ)M

µ+ logM
− 1

)
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Since δ( 1
M

) = 0, this implies ∀λ ∈ ( 1
M
, 1):

1 +
M

M − 1

δ(λ)

λ− 1
M

≤ (1 + µ)M

µ+ logM

Using Equation (2.23), we now conclude that the per symbol repair com-

plexity for any D∗ is at most (1+µ)M
µ+logM

. As discussed earlier, if we assume a

bound for λ’s range of interest, we would be able to further optimize the

repair complexity guarantee using a corresponding optimization in the over-

head profile as shown in Figure 2.2.

2.4 Systematic Rateless Codes with Low Complexity

A systematic code is defined as a code in which the source symbols appear as a

subset of the code symbols. It is desirable for a code to be systematic in many

applications. We now briefly outline the construction of systematic raptor

codes proposed by Shokrollahi in [7]. Let x1, . . . , xk be the original source

symbols. In the first step of encoding, the source symbols are transformed

into intermediate symbols, y1, . . . , yk. The raptor code is now constructed

by taking y1, . . . , yk as the source symbols. The intermediate symbols are

computed by solving for the system of linear equations which sets the k

source symbols to match some subset of k positions in the first k(1 + ε)

generated code symbols, where ε > 0 is small. However, this construction

has a bottleneck step in the encoding process, which corresponds to an inverse

matrix multiplication (Step 1 of Algorithm 11 in [7]) and consequently has a

linear per symbol encoding complexity. The systematic versions of LT codes

proposed in [7] avoid this step, but they do not enjoy the constant per symbol

encoding/decoding complexity advantage of raptor codes.

2.4.1 A Systematic Construction Based on Augmented
Raptor Codes

Consider the augmented raptor codes we proposed in Section 2.3.7 where

the precode selected to compute {s1, . . . , sk(1+ε)} is chosen to be a system-

atic fixed rate erasure code with constant encoding/decoding complexity

(e.g. [26]). We can now choose the degree distribution Ω to optimize the
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overhead properties as outlined in Section 2.3.8. This provides a rateless

code with constant encoding/decoding complexity with an overhead penalty

of less than 25%. This is a useful tradeoff in any situation when the reduc-

tion in encoding complexity (from linear per symbol to constant per symbol)

is attractive in comparison to the additional bandwidth cost due to extra

overhead (which can be guaranteed to be at most 25% and can be reduced

further if a guarantee can be provided on the fraction of correctly transmitted

symbols within the systematic part).

2.5 Broadcasting with Side Information

In this section, we consider the problem of designing codes to multicast data

from a source to receivers that possess arbitrary subsets of the data a priori as

side information. We formulate and study an optimization problem over de-

gree distributions to minimize the overhead necessary for complete decoding,

and prove that: (i) Degree distributions converging to the standard soliton

distribution cannot exploit side information in terms of the overhead neces-

sary for complete decoding. (ii) An asymptotic shifted soliton distribution

achieves an overhead which is within a constant factor (< 2) of the optimal

overhead. (iii) There exist no degree distributions which achieve asymptot-

ically optimal overhead for any non-trivial constant fraction of the data as

side information. We then propose a solution using the systematic versions

of raptor codes designed in Section 2.4 to which the computed lower bound

does not apply.

The presence of side information at the receiver could arise from a pre-

vious incompletely decoded download session or from alternate data sources.

The issue of designing codes which exploit the side information present at

the receivers has been considered previously by a number of authors. Met-

zner [64] originally identified random linear coding as a useful approach to the

context of designing an efficient broadcast retransmission protocol. More re-

cently, Birk and Kol [65] have considered code design to minimize the number

of transmissions, assuming that the encoder is provided with the complete

side information pattern at the receivers. This problem is known as index cod-

ing in its form where each receiver requests a unique packet. Reference [66]

showed that the optimal linear index code can be formulated as a rank min-
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imization problem on finite field matrices. The unique requests constraint

can also be generalized to arbitrary subsets of possibly non-disjoint requests,

for which multicast is a practically important non-trivial subclass. However,

conveying the side information at each receiver is a task that requires too

much overhead in the form of ARQ. Further, processing the collected data

to compute the optimal code is likely to be impractical because arbitrary

rank minimization problems on finite field matrices are computationally in-

tractable. Consequently, approaches that are oblivious to the precise pattern,

and those that can also simultaneously deal with lossy transmissions, are use-

ful.

2.5.1 Optimal Overhead with Side Information

Let λ > 0 represent a parameter which corresponds to each receiver having

a subset of (1 − λ)k packets as side information. Assume that the decoder

subtracts the symbols available as side information from each code sym-

bols received to give a resulting code symbol, which we shall refer to as

the “projected code.” Let Ω(k) = {Ω(k)
1 , . . . ,Ω

(k)
k } be a degree distribution

with support on [k] (i.e. corresponding to block length k), which is used at

the encoder. Let Ψ(k) be the corresponding projection of Ω(k) obtained on

subset of λk unknown source symbols. The relation between them is (for

1 ≤ i ≤ λk, 1 ≤ j ≤ k):

Ψ
(k)
i =

k∑
j=i

Ω
(k)
j

(
kλ
i

)(
k(1−λ)
j−i

)(
k
j

) (2.26)

For small i and j independent of k, the term
(kλi )(k(1−λ)j−i )

(kj)
is approximated

by
(
j
i

)
λi(1 − λ)j−i, though this not an approximation in general. For LT

code on block length k, the average degree is of the order log k. Suppose as

k → ∞, the pointwise limits converge to valid probability distributions Ω

and Ψ respectively on Z+. The relation between the limiting distributions

Ω and Ψ is given by the following relation, which follows by the dominated

convergence theorem.
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Lemma 4. For limiting distributions Ω and Ψ formed as above, we have:

Ψi =
∞∑
j=i

Ωj

(
j

i

)
λi(1− λ)j−i (2.27)

We then have the following relation between the generating functions (de-

fined as Ω(x) =
∑

i Ωix
i):

Corollary 5. The relation between the generating functions Ψ and Ω is:

Ψ(x) = Ω(1− λ+ λx)

Definition 1. Let

rk =
no. of coded packets received

λk

zk =
no. of unknown packets recovered

λk

When the limits exist, let r denote the limit of rk and sλ(r,Ω) denote the

limit of zk, where Ω is the generating function of the limit of the degree

distributions used for coding.

For a sequence of distributions that converges to a distribution with gen-

erating function, Ω(x), when λ = 1, the recovered fraction (for a vanishingly

small perturbed distribution) converges to [39]:5

s(r,Ω) = inf{z ∈ [0, 1) : rΩ′(z) + log(1− z) < 0} ∧ 1

When the decoder uses the side information of (1− λk) source symbols, it

decodes additional source symbols given by an asymptotic fraction (of λk)

corresponding to sλ(r,Ω) = s(r,Ψ). Thus:

Proposition 6. sλ(r,Ω) = inf{z ∈ [0, 1) : rλΩ′(1−λ+λz)+log(1−z) < 0}∧1

To define the overhead necessary for successful decoding of all source

blocks, we are now interested in the following optimization problem for a

5Although the conditions stated do not apply verbatim here either, the justification for
it comes from Lemma 1 of [67].
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given 0 < λ ≤ 1:

r∗λ = min
Ω
r (2.28)

Subject to : sλ(r,Ω) = 1 (2.29)

Note that the optimal overhead is r∗λ− 1. To contrast, the problem solved

in Section 2.3 involves consideration of all values of λ simultaneously while

requiring only partial recovery. In the current situation, we require complete

recovery, but for a specific λ. A trivial lower bound for r∗λ for any 0 < λ ≤ 1 is

1. We can also obtain an easy upper bound by ignoring the side information

and using the soliton distribution. Since we know that asymptotically k

packets suffice to recover all the n packets without even considering the side

information, this achieves an rλ = k
kλ

= 1
λ
. This gives us:

1 ≤ r∗λ ≤
1

λ
(2.30)

Clearly, this implies r∗1 = 1, which is attained by the capacity achieving

soliton distribution used for LT codes [6]. Some natural questions arise for

the problem under consideration: Is r∗λ = 1 for λ < 1? (i.e., Can we have

capacity achieving degree distributions for general λ?) How bad is the soliton

distribution as a solution to the optimization problem in 2.28? (We know

that it is no worse than the upper bound even after throwing away the

side information, but could it actually achieve a better ratio because of side

information?) If the soliton is bad, how do we design degree distributions

that do well for λ < 1?

2.5.2 Performance of the Soliton Distribution

Proposition 7. For the soliton distribution, a necessary condition for com-

plete recovery is r > 1/λ. This means that side information gives no advan-

tage for complete recovery.

Proof. Consider a sequence of degree distributions that converge to the soli-

ton distribution, whose generating function, Ω(x) =
∑

i≥2
xi

i(i−1)
. With Ψ(z) =

Ω(1−λ+λz), the recovered fraction zn (of a vanishingly small perturbed dis-

tribution) converges to: s(r,Ψ) , inf{z ∈ [0, 1) : rΨ′(z)+log(1−z) < 0}∧1.
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Consider:

rΨ′(z) + log(1− z)

= r
d

dz
Ω(1− λ+ λz) + log(1− z)

= rλ
d

dz

(∑
i≥2

(1− λ+ λz)i

i(i− 1)

)
+ log(1− z)

= rλ
∑
i≥1

(1− λ+ λz)i

i
+ log(1− z)

= rλ| log λ|+ (rλ− 1)| log(1− z)|

From the above equation, it is clear that rΨ′(z) + log(1− z) > 0 ∀z ∈ [0, 1)

iff rλ > 1.

2.5.3 k-lifted Soliton Distribution

Consider the k−lifted soliton distribution defined by the following generating

function (where k will be chosen later):

Ψ(x) =
∑
i≥k+1

k

i(i− 1)
xi

Shifted distributions for the side information problem were also considered

independently in [61] with different parameters (though they do not provide

the theoretical guarantees given here).

Proposition 8. For k = b1/1.82λc, the k-lifted soliton distribution requires

at most r = 1/(λb1/1.82λc) for complete recovery.
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Proof. First we lower bound Q′(z) for z ∈ [0, 1).

Q′(z) =
∑
i≥k

λk
(1− λ+ λz)i

i

= λk

(
− log(λ− λz)−

k−1∑
i=1

(1− λ+ λz)i

i

)
≥ λk (| log λ|+ | log (1− z)| −Hk−1)(

where Hk is the kth Harmonic number
)

≥ λk
(
| log λ|+ | log (1− z)| −

(
log k + γ +

1

2n+ 1
3

))
(Using a bound from [68], where γ ≈ 0.578 is the Euler constant)

≥ λk (| log λ| − log (1.82k) + | log (1− z)|)

Given r, we thus have for z ∈ [0, 1):

rQ′(z) + log (1− z) ≥ rλk (| log λ| − log (1.82k)) + (rλk − 1)| log (1− z)|

The choice of k = b1/1.82λc ensures that the first term above is non-negative.

For such a k, the second term is also non-negative for all z ∈ [0, 1) for the

given choice of r, implying that s(r,Ψ) = 1, which assures asymptotically

complete recovery.

2.5.4 Lower Bounds on the Optimal Overhead

We now compute lower bounds for the optimal decoding overhead required

for any degree distribution for a given fraction λ defining the side informa-

tion. This shows that r∗λ could be strictly greater than 1 for general λ, which

was conjectured in [60]. This is done by considering an intermediate perfor-

mance problem inspired by [67]. The optimization in Equation (2.28) can be

rewritten as:

r∗λ = min
P
r

Subject to ( ∀ 0 ≤ t < 1):∑
i≥1

rλipi(1− λ+ λt)i−1 + log (1− t) ≥ 0 (2.31)
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Choose some large integer m and consider the following related problem

(which can also be interpreted as an intermediate performance problem):

rλ,m = min
P
r

subject to: ∑
i≥1

rλipi(1− λ+ λt)i−1 + log (1− t) ≥ 0 (2.32)

∀ 0 ≤ t < 1− 1/λ(m+ 1)

We replaced the constraints in Equation (2.31) with a proper subset in Equa-

tion (2.32) and so

rλ,m ≤ r∗λ ∀ m

Further, it can be verified that:

i(1− λ+ λt)i−1 < m(1− λ+ λt)m−1

∀ i > m, t ≤ 1− 1/λ(m+ 1)

The above condition can be shown to imply that we can restrict attention to

pi = 0 ∀ i > m in the above optimization defining rλ,m. Hence we obtain:

rλ,m = min
P
r

Subject to:
m∑
i=1

rλpii(1− λ+ λt)i−1 + log (1− t) ≥ 0

∀ 0 ≤ t < 1− 1/λ(m+ 1)
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With ai = rpi, we get the LP:

rλ,m = min
A

m∑
i=1

ai

subject to:
m∑
i=1

λi(1− λ+ λt)i−1ai ≥ − log (1− t)

∀ 0 ≤ t < 1− 1/λ(m+ 1)

The dual of the above LP can be written as :

ξλ,m = max
µ

∫
t∈[0,1−1/λ(m+1))

− log(1− t)dµ(t)

Subject to: (∀ 1 ≤ i ≤ m)∫
t∈[0,1−1/λ(m+1))

λi(1− λ+ λX)i−1dµ(t) ≤ 1

where µ is a measure with support defined on [0, 1 − 1/λ(m + 1)]. Further,

any feasible solution above is a lower bound to

ξλ,m ≤ rλ,m ≤ r∗λ

Thus, we can optimize over a subclass to obtain the required lower bounds.

One possibility is to take µ as a discrete distribution with finite support. In

this case, the dual defined above becomes a finite dimensional linear program,

for which we can use linear programming to compute the bound. We plot

the bounds we have numerically computed using this approach in Figure 2.3

as a function of λ in the range [0, 1]. For most λ (except when it is very close

to 1), a lower bound strictly greater than 1 is obtained.

2.5.5 A Solution Based on (Systematic) Augmented Raptor
Codes

Consider the systematic augmented raptor codes proposed in Section 2.4.1.

Rather than the LT coding based design which was analyzed in the prior

sections, the above proposed code provides for a more naturally suited design
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Figure 2.3: A plot of the numerically computed lowerbound along with the
analytical upper bound (from Proposition 8) on the optimal overhead,
δ∗λ = r∗λ − 1.
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for the side information case. To see this, consider a code scheme for the

side information problem based on the systematic augmented raptor code,

for which the code symbols are defined as the part of the code excluding

the systematic part. The missing source symbols at each receiver can now

be considered as erased symbols in the systematic augmented raptor code

proposed. This implies that the overhead guarantees derived in Section 2.3.8

apply for this code along with the constant encoding/decoding complexity

and ratelessness.

2.6 Broadcasting a Fountain Code over Multiple Hops

Figure 2.4 illustrates the problem being considered in this section. LT

codes [6] work for a single erasure channel with a per symbol logarithmic

complexity. As the block length k → ∞, it was shown in [6] that a set of

k + O(
√
k ln2 k

δ
) coded packets is sufficient to recover the k packets with a

probability of at least 1 − δ through the simple belief propagation decoder.

δ > 0 can be arbitrarily small, and both encoding and decoding have a

complexity of O(log k
δ
).

Figure 2.4: Illustration of the basic problem being considered. We are
interested in devising good coding schemes over the links indicated by the
question marks.

The only straightforward way to use a fountain code in a general network

is to completely decode and re-encode the source message block at each

intermediate node. Though this strategy might be considered a capacity

achieving scheme in terms of the channel uses, it involves a large delay that

compounds at each hop. There has also been work addressing the specific
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case of a line network of erasure channels in [69], in which some solutions were

discussed that tradeoff between complexity, delay and adaptability. Delay is

defined as the additional time it takes for the coding scheme to complete the

transfer of all packets beyond what it would have taken if the throughput was

precisely the min-cut capacity. This delay is analyzed in [70] as overhead,

which is defined as n−k where n is the total number of received coded symbols

(packets) and k is the number of source symbols being encoded. Asymptotic

throughput optimality in these cases should correspond to a sub-linear (in

k) delay/overhead metric.

Is it possible to have the low complexity of LT codes and low delay while

maintaining ratelessness and achieving a throughput equal to capacity for

anything beyond a single erasure channel? In this chapter, we consider the

above question, with two caveats: (1) We consider networks that can be

represented as a tree of discrete memoryless erasure channels (DMC) of un-

known erasure probabilities. However from here on, we describe the scheme

for a line network of erasure DMCs (as in [69]). Due to the ratelessness, it

is easy to apply the same to a tree network wherein each node broadcasts

packets to all of its children. This easy extensibility to tree networks is an-

other advantage of the ratelessness. (2) While the scheme is still rateless

(assumes no estimate of the erasure probabilities and involves no feedback),

it needs an estimate for some universal upper bound 0 ≤ α < 1 on all era-

sure probabilities. A practical motivation for this scenario is a sequence of

relay nodes with reasonably good, but unknown, erasure channels that drop

packets at rates anything between say, 0 - 10% of the time. Most networks

do not have erasure channels that are arbitrarily bad, hence it would not be

too unreasonable to assume such an α for design. We first consider two toy

problems to motivate the scheme proposed.

2.6.1 Online Encoding

Consider a set of k source symbols. By online encoding, we refer to an

algorithm to generate a set of approximately k coded symbols that are sta-

tistically identical to a set of LT coded packets with the following restriction:

The ith coded packet being generated should be a combination of only the first

i information packets. Using the same idea that lies behind the augmented
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LT code repair, we describe the algorithm below:

Algorithm SEQCODE

(1) Generate a random set of k+o(k) symbols according to the LT encoding

process.

(2) Obtain a permutation π from the encoded symbols as follows:

(a) Run an LT decoder on the encoded symbols.

(b) If the index decoded at ith iteration of the decoding process has a

label j, then set π(i) = j.

(3) Now perform actual packet encoding using π as follows iteratively:

(i) Pick a new coded symbol that includes index π(i), and involves

other indices of values π(j) for j ≤ i.

(ii) Generate a coded output packet according to the rule given by

the symbol obtained in step (i).

Proposition 9. SEQCODE generates a set of k + o(k) packets which are

LT distributed in an online fashion.

Proof. Consider packets indexed π(1) . . . π(i). The fact that all these packets

have been decoded by the ith stage implies that there were at least i coded

packets that were all combinations of π(1) . . . π(i). In fact, the decoding

process runs to completion implies that each new index generates at least one

new symbol to encode. This implies that step 3-(i) will be successful.

2.6.2 Recoding Coded Packets at Intermediate Hops

Ignoring the real-time encoding aspect, one approach at intermediate nodes

is to do concatenated coding. In other words, an intermediate node encodes

packets that it receives, treating them as information packets themselves.

The decoder could peel off the successive coding layers and hence will involve

t successive instances of the LT decoding process at a node which is t hops

away from the source. Consider a sequence of n+ 1 nodes with source node

labeled as node 0 that starts off with k message packets. Fix a sequence of
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block lengths, k0 . . . kn to be specified later, for the n + 1 nodes to perform

the recoding. The lengths are defined with k0 = k and for each 1 ≤ i ≤ n,

ki is set to ensure that collecting a total of ki LT coded packets at node i

is enough to recover the ki−1 packets that were recoded by node i− 1, with

high probability. However, for this coding to be optimal, we need to ensure

that the asymptotic overhead incurred at each node does not accumulate

over hops.

Asymptotic Overhead: By appropriately scaling the block length k, in

terms of the number of nodes, n, it is possible to maintain cumulative rate

optimality. For LT codes, a total of at least k(1 +
log2 k

δ√
k

) packets gives an

error probability of at most δ. On a line network of n+ 1 nodes for a union

bound error probability of δ, fix a δ
n

error at each intermediate node. For

each i, we choose ki+1 = ki(1 +
log2 kin

δ√
ki

) to ensure this, where k0 = k. Since
log2 k√

k
is a decreasing function of k, we can upper bound ki as

ki ≤ k0(1 +
log2 kn

δ√
k

)i (2.33)

Finite nodes: Clearly, for i ≤ n and n constant, Equation (2.33) implies

ki ∼ k as k →∞. The complexity of encoding at node i is the complexity of

LT coding for block length ki(∼ k) which is O(k log k). Decoding complex-

ity is O(ik log k) = O(k log k) since it involves i successive instances of LT

decoding.

Unlimited nodes(n→∞): We now show that even for an arbitrary number

of nodes, the overhead can be maintained asymptotically optimal. From

Equation (2.33), we have kn = k0(1 +
log2 kn

δ√
k

)n. Setting k = Ω(n3), it can be

verified that this bound is asymptotically similar to k = k0. Hence, we can

still maintain a negligible overhead even with an arbitrarily growing number

of nodes, provided we scale the block length appropriately. Since kn ∼ k0,

the encoding complexity is still the same as before - O(log k) per symbol.

The decoding complexity now depends on the relation between n and k and

is given as O(n log k) (per symbol) at the final node. Since we require k to

grow as at least Ω(n3), this complexity is at most O(k1/3 log k) and can be

further reduced by scaling k higher than n3. This is again not restrictive,

since block length usually is of much higher order compared to the number

of nodes.
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2.6.3 Heuristic “LT-Relay”

Assume slotted time and a line network of DMC erasure channels as in [69]

with ith erasure probability εi. Intermediate nodes can send a packet that

results from coding operations that involve all the packets that have been

received until and including the current time slot. Online encoding in Sec-

tion 2.6.1 deals with an artificial situation of producing coded packets where

exactly one new information packet is made available to the encoding node

at each time slot. We need to devise a coding scheme when new packets are

revealed based on a random process that represents erasures on the previous

channel.

Fix a sequence of block lengths, k0 . . . kn, as defined in Section 2.6.2, with

k0 = k. Node 0 generates standard LT coded packets. The operations

performed by the intermediate nodes will be divided into two well defined

distinct phases called the online phase - which is roughly defined as while

the node is still receiving useful packets from its predecessor - and the post-

online phase. The main challenge is to construct a coding procedure for the

online phase so as to ensure that the set of all packets generated during the

online phase will be equivalent to an LT code. Beyond the online phase, the

stream of coded packets can continue using standard LT coding. Note that

the notion of a node’s online phase does not involve its downstream nodes,

and hence is feedback independent.

Code symbol. A code symbol is a set of indices that correspond to packet

indices which will be summed (XOR-ed) to form a coded packet. For in-

stance, one can say that LT coding is performed using a set of code symbols

generated according to a random LT distribution. Example of a code symbol:

The set {1, 3, 5} represents a code symbol that specifies the rule of summing

the first, third and fifth packets to form a coded symbol. Some definitions

and examples are given next before describing the scheme being proposed.

Online code copy: An online code copy at node i is an ordered sequence of

ki+1 code symbols that can be generated in an online fashion. Example of a

procedure to generate a random instance of an online code copy: Consider an

instance/realization of a set of ki+1 (random) LT coded symbols generated

from the ki indices, 1, 2, . . . , ki. Using the procedure SEQCODE in Section

2.6.1, w.h.p., we compute a permutation π of {1, 2, . . . , ki} such that the

number of code symbols containing exclusively the indices π(1), π(2), . . . , π(i)

41



is at least i. Now, consider the set of code symbols in the sequence in which

they lend themselves to an online encoding. This set of code symbols taken

in the sequence π is an instance of an online code copy.

Code matrix: A code matrix at node i is a T (k)× ki+1 random matrix of

code symbols in which each row corresponds to an independently generated

online code copy. The number of rows of the code matrix, T (k) = k1+δ where

δ > 0 is a constant.

We assume below that erasure probabilities are strictly increasing down

any path from the source. However, it is possible to imagine schemes (that

can be ratelessly implemented on top of the main scheme) to artificially

force monotonically worsening channels with equivalent min-cut capacity.

This leaves a sequence of effective channels of equivalent min cut capacity,

mini{1 − εi}, with modified erasure probabilities, ε
′
i ≈ max1≤j≤i εi. This is

because a good channel following a bad channel is redundant for the min-cut

capacity.

Online phase: The online phase at node i is defined to be the period until the

time slot at which node i collects a total of ki+1 coded packets. We further

partition the online phase into ki+1 + 1 states, indexed through 0, 1, . . . , ki+1,

where the node is in state i when it has collected a total of i packets. De-

note by {s0, s1, s2 . . . ski+1
} the random variables representing the number of

erasures seen in the corresponding states. The number of time slots spent in

state j is thus sj + 1 including the first time slot upon entering state j.

Note the distinction that we define the online phase to require collecting

ki+1 packets, although node i needs only ki packets to decode w.h.p. Also,

node i uses only the first ki packets it received for further encoding, even

though the online phase state is maintained till ki+1.

2.6.3.1 The Coding Scheme

We now describe the coding scheme at node i. It is implicit below that the

coded packets received are indexed sequentially for the subsequent coding

layer.

Procedure LT −RELAY (node i)

1. First generate:
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(i) A random code matrix, Mi = [cij]1≤i≤T,1≤j≤ki+1

(ii) Another independent random online code copy, Ri = {θj}1≤j≤ki+1

2. Initialize state to 0 and define the state as j, when j packets have been

successfully received from node i− 1.

3. Online phase (i.e. while in state j, 0 ≤ j ≤ ki+1):

(i) In the first time slot upon entering state j, send a packet coded

according to the code symbol θj.

(ii) After the first time slot (i.e. for the remaining sj slots): Choose a

code symbol uniformly at random from êj, the jth column ofMi.

Use it for encoding6, unless it was used in an earlier time slot.

Else, it becomes an idle slot.

4. Beyond the online phase, generate independent coded packets at each

time slot using the standard LT coding procedure for a block length of

ki.

2.6.3.2 Analysis and Justification

We now develop some arguments to justify how the proposed solution works.

Lemma 10. If n balls are thrown into T bins uniformly, the probability

C(n, T ) that there is at least one collision is upper bounded by 2n2/T .

Proof. For n > T/2, the bound is trivial since 2n2/T ≥ 1. Assume n ≤ T/2.

It is easy to verify that 1− x ≥ e−4x for 0 ≤ x ≤ 1/2.

P (No collision) =
n−1∏
i=1

(1− i/T ) ≥
n−1∏
i=1

e−4i/T = e−2i(i−1)/T

Hence, P (collision) ≤ 1− e−2i(i−1)/T ≤ 2i2/T .

Theorem 11. (w.h.p.) For any node the number of idle slots during encod-

ing, Ni, satisfies Ni ≤ log k.

6Note that we have ensured that êi contains only indices of at most i by construction.
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Proof. Let Ij denote the number of idle slots in state j for 0 ≤ j ≤ ki+1, so

that Ni =
∑ki+1

j=0 Ij. Then,

P (Ni > log k) = P (

ki+1∑
j=0

Ij > log k)

≤ P
(
{I0 > log k}

⋃
{∪ki+1

j=1 {Ij > 0}}
)

≤ P (I0 > log k) + ki+1P (I1 > 0)

≤ αlog k + 2kP (I1 > 0)

I1 is the number of idle slots (duplications) observed when choosing code

symbols uniformly from among T (k) choices for a total of s1 time slots, and

s1 is the number of consecutive erasures in state 1 and hence is a geometric

random variable. Let P (s1 = j) = (1− q)qj for j ≥ 0 where 0 ≤ q < α < 1.

P (I1 > 0) =
∑
j≥0

P (s1 = j)C(j, T (k))

≤ 2

T (k)

∑
j≥0

j2P (s1 = j) ( from Lemma 10)

=
2(1 + q)

1− q
1

T (k)
<

4

1− α
k−(1+δ)

⇒ P (Ni > log k) < αlog k +
8

1− α
k−δ

= o(k−β) for some β > 0

Definition 2. Let Λ = [λab]1≤a≤T (k),1≤b≤k be a random matrix with elements

taking {0, 1} values be defined as follows. Each element λab is a Bernoulli

random variable defined as:

λab =

1 , if cab was used for encoding

0 , otherwise
(2.34)

Theorem 12. Given any integer c, and arbitrary S ⊂ {1, 2, . . . , T (k)} ×
{1, 2, . . . k} such that

|{x : (x, j) ∈ S}| ≤ c (1 ≤ j ≤ k) ,
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the random variables {λab}(a,b)∈S are mutually independent and identically

distributed as k →∞.

Proof. First, note that b1 6= b2 ⇒ λa1b1 and λa2b2 are independent. Hence,

without loss of generality we only need to show that λa1b, λa2b . . . , λacb are

independent where the aj are all distinct. Denote, for ease of notation,

βj = λajb for 1 ≤ j ≤ c. Since βj are binary valued, we only need to show

that the events {βj = 0}cj=1 are independent.

Let P (sb = i) = (1− q)qi for i ≥ 0. For any 1 ≤ j ≤ c

P (βj = 0) =
∑
i≥0

P (sb = i)P ( All i slots missed cajb)

=
∑
i≥0

(1− q)qi(1− 1/T )i =
1− q

1− q + q/T

Consider an arbitrary subset of these events {βkj = 0}1≤j≤l where l ≤ c.

P

(
l⋂

j=1

{βkj = 0}

)
=
∑
i≥0

P (sb = i)P ( All i slots missed all cakj b for 1 ≤ j ≤ l)

=
∑
i≥0

(1− q)qi(1− l/T )i =
1− q

1− q + ql/T

As k →∞ (and hence, T (k)→∞),

(P (βj = 0))l ≈ (1− q)l

(1− q)l + l(1− q)l−1q/T

=
1− q

1− q + ql/T
= P

(
l⋂

j=1

{βkj = 0}

)

Theorem 12 implies the following corollary, which says that the code sym-

bols chosen by the algorithm are scattered “uniformly random” in the fol-

lowing sense:

Corollary 13. Let χ = {0, 1}T (k)×k denote the ensemble of all possible

realizations of the random matrix, Λ. For Ψ = [ψij] ∈ χ and for any

45



S ⊂ {1, . . . , T (k)} × {1, . . . , k}, denote

WS(Ψ) =
∑

(i,j)∈S

ψij

Consider any given integer r, and E ⊂ {1, . . . , T (k)}×{1, . . . , k}, with |E| =
r denoted as E = {e1, . . . , er}. For any φ = (φ1, . . . , φr) ∈ {0, 1}r let Θφ =

{Ψ ∈ χ : ψej = φj for 1 ≤ j ≤ r}. Then, as k → ∞, in the probability

space generated by “LT-Relay”, P (Θφ) depends solely on
∑r

i=0 φi = WE(Ψ)

∀ Ψ ∈ Θφ .

If sj, the number of time slots spent in column j, had been Poisson rather

than geometric, we could have had perfect independence due to the Poisson

splitting property. Although this is not quite the case here, we do have a

reasonable notion of “asymptotic uniformity” as argued by Corollary 13.

Theorem 14. Given that (i) the subset of code symbols from Mi used by

the algorithm at node i, is uniformly random and (ii) t denotes a time slot

past the online phase, the set of all coded packets generated by node i till time

slot t has the same degree distribution as an LT code.

Proof. Under the above assumptions, the set of code symbols used till time

t is the union of

1. Ri.

2. An (almost) uniform random subset of code symbols fromMi (partially

justified by Corollary 13).

3. The independent LT coded packets generated past the online phase.

Clearly, the components (1), (2) and (3) are mutually independent by their

construction. Also, each of them has the degree distribution of an LT coded

set of packets - (1) by construction, (2) because of the fact that a uniformly

random subset of a set of independent identically distributed (i.i.d.) random

variables is also i.i.d. as the original set. In our case, Mi is the original set

of LT coded random variables. Also, (3) is an LT coded set. Hence, their

union has the same degree distribution as a set of LT coded packets.

The above theorem implies that, as long as we ensure monotonically de-

creasing number of net successful packet receptions across a path from the
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source, we have a code whose packets have a degree distribution asymptoti-

cally identical to the LT code. Also, coded packets are being sent by node i−1

to node i at every time slot except for the the vanishing fraction of O(log k)

idle slots (Theorem 11) out of a total number of at least Ω(k) time slots.

Hence subject to successful decoding, which could be justified by equivalent

LT degree distribution observed, we have a throughput rate to node i equal

to the success rate on the channel between nodes i−1 to i, min1≤j≤i (1− εj).

2.7 Conclusion

In this chapter, we considered design and analysis pertaining to four impor-

tant practical problems in erasure networks: (1) efficient repair for storage

systems, (2) efficient systematic rateless codes, (3) broadcasting with side

information, and (4) broadcasting end-to-end across multiple hops. We pro-

posed solutions to each of them in such a way as to import the many desirable

characteristics of fountain codes. The constructions have a good deal of syn-

ergy in terms of the ideas that lie behind their solutions. For example, the

repair algorithm for the augmented LT code is originally motivated by the

online encoding procedure envisioned in the context of relaying a fountain

code across multiple hops in Section 2.6. Also, the problems of designing the

degree distributions for augmented raptor codes and for using LT codes in

the presence of side information both involve optimizing the overhead, uti-

lizing the result on the fluid limit of the evolution of degree one packets for

any given degree distribution. Moreover, the systematic rateless codes that

we come up with in Section 2.4 are a byproduct of the augmented raptor

code construction motivated by the storage problem in Section 2.3. Finally,

our proposed construction of systematic rateless codes in Section 2.4 that is

based on the augmented raptor codes of Section 2.3.7 ended up being useful

as an efficient solution to the broadcasting with side information problem, as

seen in Section 2.5.5.
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CHAPTER 3

THE ROLE OF CODING IN LOCAL
BROADCAST FOR ERASURE NETWORKS

3.1 Introduction

In this chapter, we consider the role of coding, specifically in exploiting the

local broadcast property of the wireless medium. We first argue that for

unicast, the throughput achieved with network coding is the same as that

achieved without any coding. This argument highlights the role of a general

max-flow min-cut duality and is more explicit than previous published proofs

of this fact. The maximum throughput can be achieved in multiple ways

without any coding, for example, using backpressure routing, or using some

centralized flow scheduler that is aware of the network topology. However, all

such schemes, in order to utilize the local broadcast property, require dynamic

routing decisions for choosing the next hop for each packet from among the

nodes where it is successfully received. This choice seems to depend critically

on feedback signaling information like queue lengths, or ARQ. In contrast,

the use of network coding can achieve the same without such feedback, in

exchange for decoding overhead.

A key task in comparing routing and coding is to assess the importance

of feedback signaling to the throughput of routing policies. With this moti-

vation, we explore how feedback at a given node affects its throughput, for

an arbitrary vector of given rates of its one hop neighbors to the destina-

tion. Static routing policies which are essentially feedback independent, are

considered. An explicit characterization of the optimal policies under such a

feedback constraint is obtained, which can be interpreted as a natural gen-

eralization of both flooding and traditional routing (which does not exploit

local broadcast, because the next hop is fixed prior to the transmission).

When losses at the receivers are independent (still allowing for dependencies

on transmissions by two different nodes, to model interference), the reduction
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in capacity due to constraining the feedback is limited to a constant fraction

(1− e−1 = 63%) of the coding capacity, and gets arbitrarily close to optimal

as the capacity itself is low. This result is also extended to a more general

version on feed-forward networks without any assigned rates of the one hop

neighbors to the destination. However, if there are dependencies in the losses

seen by receivers from a single broadcast, the reduction could be arbitrarily

bad, even with just two hops.

Network coding was originally introduced in [16] as a general frame-

work to achieve the optimal multicast rate from a data source to a set of

receivers in wired networks. In contrast to “store-and-forward,” also called

“routing” operation, network coding performs recombinations of data packets

at network nodes, while the former operation never alters original packets.

Since then, many other applications of network coding have been identified.

In particular it has been considered in the context of wireless networks [71]

for unicast communications, where such a wireless setting was identified as

an especially good candidate for network coding because of the local broad-

cast. The wireless scenario of [71] features lossy transmissions as well as

local broadcast. The experimental evaluations of [71] show benefits of net-

work coding over routing policies in terms of the transmission rates achieved.

This is in contrast with recent work of Smith and Hassibi [72], which implies

that routing policies can achieve the capacity for unicast. This raises the

question: Are there any benefits of network coding over routing in wireless

unicast communications? If so, where do they stem from, and how large can

they be?

In a nutshell, we show that the benefits of coding over routing depend

on the extent of available feedback signaling and characterize the relation.

Our first contribution is a simpler argument, using linear programming (LP)

duality, that the maximum routing throughput in the case of wireless uni-

cast is the same as the rate achieved with coding. Using this, it is shown

that backpressure routing achieves not only the optimal throughput among

routing policies, but also more generally across policies that involve cod-

ing. However, backpressure policy performs a very dynamic routing of each

packet through the network, and requires exchanging queue lengths from

all neighbors at every step. This motivates an investigation into the funda-

mental limits of static routing policies which do not need extensive feedback

signaling. We study this tradeoff and quantify the limits imposed by an
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appropriately defined notion of restricted feedback.

Consider the following extreme case to motivate the analysis (see Fig-

ure 3.1): There are m distributed agents with each agent holding a copy of a

set of m distinct packets (which they all received from the source). With full

coordination, they can schedule all the m packets in one transmission each by

avoiding duplication. However, if we restrict their choice to be made in a dis-

tributed manner without coordination, the total number of distinct packets

covered by a random choice at each relay approaches 1−(1−1/m)m → 1−e−1,

thus leading to only 63% throughput. 100% throughput could be achieved

by either (i) making coordinated choices among relay nodes through confer-

encing among all the relays, or (ii) letting each node send an independent

random linear combination of all m packets. In other words, network coding

seems to be essentially solving a distributed synchronization problem without

the need for any feedback signaling.

P(S,i) P(i,D)

S D

m relays

Figure 3.1: The relay network example.

The above synchronization constraint is modeled as the feedback indepen-

dent routing (FIR) restriction (see Definition 8): informally, this says that

the decision of whether a node chooses to forward a packet should not depend

on erasures at other nodes. In all examples of policies that achieve the capac-

ity without any coding, this information is implicitly utilized based on the

feedback signaling. Under the FIR restriction, we show that the optimal poli-

cies are characterized as tagging policies where each packet being broadcast

is assigned multiple next hops. Tagging policies can be considered a general-

ization of both flooding (where every broadcast packet is routed by everyone

that receives it), and traditional routing (where each packet is routed only
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by a specific receiver chosen prior to the broadcast). When transmissions

are subject to mutually independent losses at the receivers (but still possibly

allowing for dependences of losses for packets transmitted by two different

nodes), even when restricted to feedback independent routing, it is possible

to achieve at least 63% of the capacity. In fact, as the capacity, C∗ → 0, the

throughput achieved becomes 100% of C∗ in the limit. For a general feed-

forward network with h+ 1 hops in which all nodes are restricted to operate

under a similar routing constraint, we show under a similar independence

condition for link losses (but allowing dependence across different broad-

casts) that the reduction in throughput is lower bounded as fh(C∗), where

f(x) = 1− e−x. Thus, for a limited number of hops, and when the capacity

is low to begin with, one can achieve close to optimal throughput without

actually making dynamic routing choices. One might imagine that depen-

dencies in link losses supply implicit information about other link losses,

and therefore allow better throughput compared to independent losses. But

this is not true, as we show a counterexample with dependent link losses for

which static feedback independent routing capacity is arbitrarily bounded

away from the network coding capacity even for a 2-hop network. One of the

implications in this conclusion is that, when feedback is constrained, coding

in the network could be unavoidable to achieve non-vanishing throughput.

3.2 Related Work

The merits of routing versus coding have been extensively studied in the

context of wireless, both theoretically and by experiments. The following

two lines of work deal with the ways in which local broadcast can be ex-

ploited: (i) By using coding: This has been investigated in [71, 73, 74]. The

advantage of using network coding to exploit local broadcast is the lack of a

need for sophisticated coordination and/or routing choices among the nodes.

The price to pay for this is the decoding complexity. (ii) By making dy-

namic routing/flooding choices along with rich feedback signaling: This was

the path taken in [72, 75, 76]. The maximum throughput in an information

theoretic sense for the wireless erasure network (WEN) model was studied

in [74] and was shown to be equal to the appropriate hypergraph min cut, C∗.

In [72], for the unicast wireless setting, a flooding based policy with network
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wide instantaneous broadcast of the identity of each packet received at the

destination was shown to achieve C∗. Using this, [72] makes an important

observation that coding is in fact not necessary for achieving a throughput

equal to the capacity in wireless unicast settings. In [76], backpressure rout-

ing (requiring rich feedback signaling to perform routing) was shown to be an

optimal routing plus scheduling policy in a much more general context taking

into account interference effects. In general (i.e. for multicast), [77] proposes

the use of feedback together with network coding for online decoding.

3.3 The Wireless Erasure Network Model

Let G = (V,E) be a directed graph. Let N (i) = {j ∈ V : (i, j) ∈ E}.
We consider a wireless network that operates on this graph over time t ∈
{0, 1, 2, . . .}. For each t, a node can “broadcast” to its neighbors. The net-

work is subject to probabilistic constraints on the successes of these broad-

casts. Specifically, at any given time, t, for each i ∈ V, Z ⊆ N(i), let χ(i, Z, t)

denote a {0, 1} random variable that represents the following:

χ(i, Z, t) =


1 , if broadcast from node i at time t is successful to Z,

and fails to N (i)/Z

0 , otherwise

The random variables χ can be arbitrarily correlated across the argument

i, which allows for modeling arbitrary interference constraints, but we will

assume that they are independent across t. For example, this could model

the situation in the random access scheduling, where at each time slot, there

is a probability that a given node actually transmits, with the transmission

being successful if and only if no other node in its interference radius is

simultaneously active. Note that, for Z, we have:
∑

Z⊆N (i) χ(i, Z, t) = 1 ∀i, t.
We define: c(i, Z) = E[χ(i, Z, t)] ∀t. Thus, we are given a network topology

along with c(i, Z) as the capacities. Our analysis will be impervious to the

correlations across i, so we will not explicitly specify them. An interesting

special case of the above model is to have link (i, j) successful with probability

p(i, j), with losses from i to each of the neighbors in N (i) being independent.
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We then have:

c(i, Z) =
∏
j∈Z

p(i, j)
∏

j∈N (i)/Z

(1− p(i, j))

We consider a single unicast flow. However, the insights obtained are also

general enough for multiple competing flows, with each flow assigned a fixed

fraction of the link capacities and a comparison with intra-session network

coding in such a scenario. Thus, without loss of generality we assume a

source, S, and destination, D. The source has an infinite set of packets

indexed over the integers, intended for replication at D. For any v ∈ V , let

αv(t) denote the number of distinct packets that were replicated at node v

till time slot t.

Definition 3 (Routing policy, P). A routing policy P decides for each node

i ∈ V , and time t ∈ {0, 1, . . .}, a packet to be transmitted from among the

αi(t− 1) choices in its possession.

Definition 4 (Capacity). The throughput of a policy P is defined as:

C(P) = lim inf
t≥0

E[αD(t)]

t

The capacity is the highest possible throughput C , supP C(P).

3.4 A Max Flow Characterization

A key observation is that any policy which uniquely routes each packet

without keeping multiple copies can be represented by a valid flow on the

throughput constrained graph. In the linear program defined below, each

feasible solution represents a policy that routes a fraction proportional to

r(i, j, Z) of successful broadcasts from i to Z uniquely to j ∈ Z. The term∑
{Z∈N (i):j∈Z} r(i, j, Z) represents the net flow from i to j. The optimum

value of the linear program (LP) then represents the throughput achieved.

Definition 5 (F, the maxim flow value). Let P denote the set of all S −D
paths in G. We define the F for a given broadcast capacitated graph as the
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optimum value of the following LP:

F = max
∑
p∈P

xp (3.1)

Subject to: xp ≥ 0 ∀ p ∈ P

r(i, j, Z) ≥ 0 ∀ {(i, j, Z) : (i, j) ∈ E, j ∈ Z ⊆ N (i)}∑
{p∈P :(i,j)∈p}

xp −
∑

{Z∈N (i):j∈Z}

r(i, j, Z) ≤ 0 ∀(i, j) ∈ E

∑
j∈Z

r(i, j, Z) ≤ c(i, Z) ∀ {(i, Z) : Z ⊆ N (i)}

Let x∗p, r
∗(i, j, Z) denote the optimum solution to the above LP. It is

straightforward to show that this capacity can be achieved by the follow-

ing policy:

Definition 6 (Pfs, the flow splitting policy). Any packet transmitted by node

i, and received by the set Z ⊆ N (i) of its neighbors is “routed” uniquely to

j ∈ N (i) with probability r∗(i,j,Z)∑
k∈Z r

∗(i,k,Z)
(thus ensuring that at most one copy

of each distinct packet is being transmitted at any point).

We now consider the min cut appropriate for the model by considering the

probability that at least one of the nodes across the cut receives a transmis-

sion.

Definition 7 (Minimum cut, C∗). A Cut is a disjoint partition of V into A

and Ā with S ∈ A and D ∈ Ā. The capacity of the cut is then:

C(A) =
∑

i∈A,Z⊆N (i),Z∩Ā 6=φ

c(i, Z)

The minimum cut is: C∗ = minAC(A).

It is easy to argue that C∗ is an upper bound on the throughput for any

scheme even with coding, and was in fact shown to be equal to the infor-

mation theoretic capacity of the WEN in [74]. Thus, C ≤ C∗. Based on a

duality argument analogous to the classical max flow min cut theorem, the

following can be shown:

Theorem 15. F = C∗ = C
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Proof. Consider the dual program for the LP at Equation (3.1) with dual

variables b(i, Z) for each i ∈ V, Z ⊆ N (i) and y(i, j) for each (i, j) ∈ E. We

have:

DUAL∗ = min
∑

i∈V,Z⊆N (i)

c(i, Z)b(i, Z) (3.2)

Such that:∑
{(i,j)∈p}

y(i, j) ≥ 1 ∀ p ∈ P (3.3)

− y(i, j) + b(i, Z) ≥ 0 ∀{(i, j, Z) : (i, j) ∈ E, j ∈ Z ⊆ N (i)}

y(i, j) ≥ 0 ∀(i, j) ∈ E

b(i, Z) ≥ 0 ∀(i, Z) : i ∈ V, Z ⊆ N (i) (3.4)

Consider the mincut as written in Equation (7), and let A∗, Ā∗ denote this

cut. Let y∗(i, j) = 1 if i ∈ A∗, j ∈ Ā∗ and 0 otherwise. Similarly, let

b∗(i, Z) = 1 if i ∈ A,Z ∩ Ā∗ 6= φ and 0 otherwise. Then, it can be ver-

ified that this defines a feasible solution to the dual LP above, and that∑
i∈V,Z⊆N (i) c(i, Z)b∗(i, Z) = C∗. Thus,

C∗ ≥ DUAL∗ (3.5)

Now consider an integral constrained version of the above dual:

DUAL∗ = min
∑

i∈V,Z⊆N (i)

c(i, Z)b(i, Z) (3.6)

Such that:∑
{(i,j)∈p}

y(i, j) ≥ 1 ∀p ∈ P (3.7)

− y(i, j) + b(i, Z) ≥ 0 ∀{(i, j, Z) : (i, j) ∈ E, j ∈ Z ⊆ N (i)} (3.8)

y(i, j) ∈ {0, 1} ∀(i, j) ∈ E

b(i, Z) ∈ {0, 1} ∀(i, Z) : i ∈ V, Z ⊆ N (i) (3.9)

Let y∗, b∗ define the optimal solution to the above integral constrained LP.

Then, defineA∗ = {i ∈ V : ∃ a path, p, from S to i such that
∑
{(i,j)∈p} y∗(i, j) =

0}. Then, D /∈ A∗ due to Equation (3.7), and thus A∗ defines an (S,D) cut.

Furthermore, from Equations (3.8) and (3.6), we get C(A∗) = DUAL∗. This
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implies that

C∗ ≤ DUAL∗ (3.10)

To summarize, we so far have:

F = DUAL∗ ≤ C ≤ C∗ ≤ DUAL∗ (3.11)

If we are able to argue that the constrained LP indeed achieves the optimum

(the details of this are given in Lemma 16), we would then have DUAL∗ =

DUAL∗, implying that all quantities in Equation (3.11) are the same.

Lemma 16. DUAL∗ = DUAL∗

Proof. We use an analogous argument employed in showing the correspond-

ing statement for the classical max flow min cut theorem. The argument

considers a probability distribution on the set of all possible cuts and argues

that the expected value of C∗ thus obtained is no more than DUAL∗, which

in turn implies that DUAL∗ ≤ DUAL∗, thus completing the proof. Consider

the dual LP in Equation (3.2), and let y∗(i, j), b∗(i, Z) denote the optimal so-

lution which achieves DUAL∗. Consider a graph with edge lengths given by

y∗(i, j) and let d(i) , length of the shortest path from S, with edge lengths

given by y∗(i, j). Let λ ∈ (0, 1) be chosen uniformly and define:

A∗ = {i ∈ V : d(i) ≤ λ}

This defines a cut with probability 1, since d(S) ≥ 1 from Equation (3.3).
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Then:

E[C(A∗)] = E[
∑

i∈A∗,Z⊆N (i),Z∩Ā∗ 6=φ

c(i, Z)]

= E[
∑

i∈V,Z⊆N (i)

c(i, Z)1{i ∈ A∗, Z ⊆ N (i), Z ∩ Ā∗ 6= φ}]

=
∑

i∈V,Z⊆N (i)

c(i, Z)P
(
i ∈ A∗, j ∈ Ā∗ for some j ∈ Z

)
=

∑
i∈V,Z⊆N (i)

c(i, Z)P (d(i) ≤ λ, d(j) > λ for some j ∈ Z)

=
∑

i∈V,Z⊆N (i)

c(i, Z)(max
j∈Z

d(j)− d(i))+ (∵ λ is uniform)

≤
∑

i∈V,Z⊆N (i)

c(i, Z)(max
j∈Z

y∗(i, j)) ( traingle inequality )

≤
∑

i∈V,Z⊆N (i)

c(i, Z)b∗(i, Z) ( from Equation (3.4)) = DUAL∗

Thus, coding in the network is not necessary to achieve the optimal through-

put in unicast, assuming unconstrained feedback signaling. This fact was also

argued by [72] in a closely related continuous time model (and conjectured

and verified by simulation for the discrete time model that we consider).

This was accomplished by considering a policy which involves flooding the

network with each packet until at least one copy reaches the destination and

subsequently using a network wide feedback signal to delete these copies ev-

ery time the destination receives a new packet. It was shown that such a

policy stabilizes the network for all rates below the C∗ using Lyapunov sta-

bility argument. Lemma 17 shows that a distributed backpressure scheme

which routes each packet to the least loaded neighbor (thus, avoiding mul-

tiple copies) also achieves the information theoretic min cut capacity, C∗.

This is also suggested by Theorem 15 in conjunction with Neely’s result of

optimality of backpressure routing schemes in a context that involves power

control and with a different interference model [76].

Lemma 17. Consider a Markov chain defined on the network as follows:

Each node has a queue of packets. New packets arrive to the queue at the

source according to a Bernoulli process of rate λ. For any t, i, Z such that

57



χ(i, Z, t) = 1, the backpressure policy routes a packet from node i to a node

j such that queue size difference is maximized (subject to being positive). If

λ < C∗, the Markov chain thus obtained is stable (positive recurrent).

Proof. The proof follows along the lines of [78] using a quadratic Lyapunov

function and Foster’s condition to show that the Markov chain is positive re-

current. Packets are injected at the source node according to a Bernoulli i.i.d.

process with mean λ < C∗. We shall use the potential, V (t) =
∑n

i=1 q
2
i (t),

where i represents an index over the n nodes in the network and qi(t) rep-

resents the number of packets that are held at node i. Let {Ft}t≥0 be a

filtration adapted to the queue length process. By Foster’s theorem (see [78]

and the references therein), a sufficient condition for stability is to show that

that the Lyapunov drift E[V (t+ 1)− V (t)/Ft] < 0 when V (t) is sufficiently

large. Let q(t) denote the n dimensional row vector with qi(t) being the ith

element. Let R be the adjacency matrix of dimension n×L (where L = |E|,
the number of links) for the given graph (i.e., the (i, l)th element, r(i, l) is

1(−1) iff the link l starts(ends) at i, and 0 otherwise). Let E(t) denote the

L dimensional indicator vector denoting the subset of links on which packets

were routed by the backpressure policy, and let A(t) denote the arrival pro-

cess indicator vector, i.e. the element of A(t) corresponding to the source

is the Bernoulli random variable with mean λ and all other elements are 0.

Then, the queue lengths evolve according to q(t+ 1) = q(t) + R E + A(t).

Thus (with . denoting the usual dot product of vectors):

V (t+ 1)− V (t) = q(t+ 1).q(t+ 1)− q(t).q(t)

= (R E(t) + A(t)).(2q(t) + RE(t) + A(t))

≤ (n+ 1)2 + 2(q(t).RE(t) + q(t).A(t))

Since the first term above is constant over time, showing that the second

term has a large negative drift for large queue lengths is sufficient (since

large potential implies large queue length under connectivity assumptions

on the graph). Let W(t) denote the L dimensional vector where the lth ele-

ment denotes the queue length difference for the lth link. Then, q(t).RE(t) =

−W(t).E(t). Hence, we only need to argue that E[−W(t).E(t)+q(t).A(t)/Ft]
has a negative drift. E[q(t).A(t)/Ft] = q(t).A where A is a vector where

the element corresponding to the source is λ and all other elements 0. Since
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λ < C∗, it follows from the max flow interpretation of Theorem 15 that

there exist variables r∗(i, j, Z) satisfying the constraints of the linear pro-

gram given by Equation (3.1), and an ε > 0 such that q(t).A ≤ (1 −
ε)W(t).f∗, where the component of f∗ corresponding to link l = (i, j) is

f ∗l =
∑
{Z∈N (i):j∈Z} r

∗(i, j, Z). Let e∗(t) denote the indicator vector of di-

mension L, for the routing selected by the flow splitting policy, Pfs given in

Definition 6. Then, W(t).f∗ = E[W(t).e∗(t)/Ft]. Thus,

E[−W(t).E(t) + q(t).A(t)/Ft] = E[−W(t).E(t) + (1− ε)W(t).e∗(t)/Ft]

= E[−W(t).E(t) + W(t).e∗(t)/Ft+/Ft]− εE[W(t).e∗(t)/Ft]

Here, Ft+ denotes the sigma algebra that contains information about the

successes on links at time t in addition to the queue length process until time

t, and thus, Ft ⊆ Ft+ ⊆ Ft+1. The first term is non-positive because the

backpressure policy minimizes W(t).E(t) among all possible options con-

ditioned on the information available on the link successes and the queue

lengths (which is what conditioning on Ft+ denotes). The second term takes

arbitrarily large negative values for large V (t) for any fixed ε > 0, and thus,

we have the required negative drift.

3.5 Formalizing a Notion of Restricted Feedback

While we have so far discussed schemes that can achieve the unicast capacity

in a wireless network without the need for coding, employing coding in the

network can achieve the capacity without using feedback. This calls for

an understanding of the inherent limits to the achievable throughput when

we restrict the exploitation of feedback in the choice of routing policies. The

decision of whether to forward a packet further at a given node should ideally

be made without considering the erasure events on other links (this is not the

case with any of the routing schemes we have discussed so far which achieve

the maximum throughput). In this context, we first fix the vector of rates

that the one hop neighbors can support to the destination simultaneously

and study how feedback constrained routing affects the overall throughput

from the source. The most obvious visualization of this is a network in which
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the source and destination are assisted by relays which do not communicate

within themselves (Figure 3.1).

Let c(Z) = E[χ(S, Z, t)] for Z ⊆ [m]. Let p(S, i) =
∑

Z⊆[m]:i∈Z c(Z) de-

note the probability that the a packet transmitted from S is received at i

successfully. We shall let p(i,D) denote the long-term throughput that relay

i can support to the sink D. Given a generalized routing/flooding policy, we

shall use the {0, 1} random variables, ri(p), r
∗
i (p) which denote the following

events:

1. {ri(p) = 1} ⇐⇒ Packet transmitted in time slot p from the source

(which shall henceforth be referred to as packet p) was received suc-

cessfully by relay i. We assume that the source attempts broadcast of

distinct packets at each time slot without any loss of generality (e.g.,

by employing appropriate source coding, or because it has an unlimited

stream of useful packets).

2. {r∗i (p) = 1} ⇐⇒ Packet p is routed to D via relay i. Note that: (1)

{r∗i (p) = 1} ⇒ {ri(p) = 1}. (2) It is possible that r∗i (p) = 1 for multiple

i.

We will now explicitly describe what we mean by feedback independent

routing.

Definition 8 (Feedback independent routing (FIR)). ∀p ∈ {0, 1, . . .},∀A,B ⊆
[m] such that A ∩ B = φ, the given routing policy satisfies the FIR restric-

tion if, conditioned on {ri(p) = 1 ∀ i ∈ A}, the following two collections of

random variables: {r∗i (p)}i∈A and {ri(p)}i∈B, are mutually independent.

This condition is essentially equivalent to assuming a lack of feedback to

the broadcasting node. Technically, lack of feedback is sufficient but not

entirely necessary to satisfy this. While this distinction is subtle, it might

be noted that one does not violate FIR by using rudimentary feedback for

purposes other than routing. Nevertheless, source coding is a convenient

way to completely eliminate feedback. As for the first hop nodes, we merely

consider them as black-boxes that support some arbitrary vector of simulta-

neous rates to the destination. For a 2-hop relay network, these simultaneous

rates could be achieved by employing any capacity achieving scheme for a
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single erasure channel, i.e. either by (1) feedback to the relays, or (2) forward

erasure coding (FEC) at each relay.1

We have so far discussed three policies which achieve capacity without any

coding: (1) the flow splitting policy Pfs in Definition 6, (2) the backpressure

policy in Lemma 17 and (3) the policy of [72]; but they all involve a heavy

interaction between feedback and routing, and hence fail to satisfy the given

constraint.

3.6 Capacity under Feedback Independent Routing

Constraint

Definition 9. The capacity with feedback independent routing, CR is de-

fined as the maximum throughput as in Definition 4, restricted to policies P
satisfying Definition 8.

For FIR, one extreme is to tag each packet with a single relay (this is how

routing is done in practice in the 802.11 protocol). This could be suboptimal

because it does not exploit the local broadcast advantage. The other extreme

is to flood every packet to all relays. This could be suboptimal when the

relays do not have enough capacity to forward all packets they received to

the destination. They will then have to make distributed decisions on which

packets to forward from among the received packets, leading to redundant

transmissions and a hence a decreased throughput. As we will show, when

we restrict to FIR, the maximum throughput is achieved within a subclass

of policies that we shall call the tagging policies. A tagging policy assigns

to each packet a subset of relays, Z ⊆ [m], which is independent of any

feedback. We represent the fraction of packets that are tagged with Z as

t(Z). A relay i that receives a packet successfully routes the packet without

dropping it if and only if i ∈ Z. These packets are retransmitted until the

destination receives them. The capacity of such policies can be expressed

via the linear program below, where each feasible solution corresponds to a

specific tagging policy. The last constraint in the LP states that the arrival

1The key aspect that distinguishes such FEC from network coding is that in the case
of FEC, the destination has to be able to decode the data being encoded by each relay
independently from the transmissions received from that specific relay alone, whereas with
network codes, the relay only needs to collect the packets from all relays and jointly decode
them.
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rate of packets to any relay’s queue has to be less than its forwarding capacity

to the destination.

Definition 10 (Tag capacity, CT ). CT is defined as the optimum value of

the following LP with variables t(Z) ≥ 0 where Z ⊆ [m].

CT = max
∑

Z,Z′⊆[m]:Z∩Z′ 6=φ

t(Z)c(Z ′) (3.12)

Subject to:
∑
Z⊆[m]

t(Z) ≤ 1; (3.13)

p(S, i)

 ∑
Z⊆[m]:i∈Z

t(Z)

 < p(i,D) ∀i ∈ [m] (3.14)

All packets that reach a relay successfully and have the relay in the tag

will eventually reach D because of the constraint in Equation (3.14) (which

implies that the queue of packets at each relay is stable). Since the tags are

chosen independent of the losses, the probability that a packet is successfully

transmitted to some relay which is also included in its tag is
∑

Z∩Z′ 6=φ t(Z)c(Z ′),

which can be readily shown to be equal to the throughput of the policy as

per Definition 4.

Lemma 18. CR ≥ CT

Lemma 18 holds due to the fact that any feasible solution to the LP gives

us a tagging scheme whose throughput is equal to the value of the LP.

3.7 Optimality of Tagging Policies under FIR

Remarkably, these policies will now also be shown to be optimal in general

under the FIR constraint, thus giving us an explicit characterization of CR

in the form of Theorem 19.

Theorem 19. CR ≤ CT , implying CT = CR

Proof of Theorem 19. We look at any policy that satisfies FIR and show that

it is possible to define appropriate variables that define a feasible solution to

the LP in Definition 10, and for which the throughput is upperbounded by

the objective function.
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Consider any arbitrary policy. We will show that the expected number of

distinct packets that reach the destination in k time slots cannot be more

than kCT as long as FIR in Definition 8 is satisfied, thus implying that the

CR is at most CT . Define:

t(Z) =
1

k

k∑
p=1

P

(
r∗i (p) = 1 ∀ i ∈ Z and 0 ∀i ∈ [m]/Z

ri(p) = 1 ∀ p ∈ [m]

)
(3.15)

where we use the standard convention of writing P (A∩B)
P (B)

as P (A
B

) for an

event B with positive probability. It is easily verified that t(Z) ≥ 0 and∑
Z⊆[m] t(Z) = 1. We will now verify that the third constraint (Equation

(3.14)) holds for any i ∈ [m].

kp(i,D) ≥ E[
k∑
p=1

1{r∗i (p) = 1}]

=
k∑
p=1

P (ri(p) = 1)P

(
r∗i (p) = 1

ri(p) = 1

)

= p(S, i)
k∑
p=1

P

(
r∗i (p) = 1

ri(p) = 1

)

= p(S, i)
k∑
p=1

P

(
r∗i (p) = 1

rj(p) = 1 ∀j ∈ [m]

)
(using def.8)

= p(S, i)
k∑
p=1

∑
Z3i

P

(
r∗j (p) = 1 ∀ j ∈ Z and 0 ∀j ∈ [m]/Z

rj(p) = 1 ∀j ∈ [m]

)
= kp(S, i)

∑
Z3i

t(Z) (by definition of t(Z) in Equation (3.15))

We now calculate the number of distinct packets replicated at D in k time

slots.

E[αD(k)] =
k∑
p=1

P ({
⋃
i∈[m]

{r∗i (p) = 1}})

=
k∑
p=1

∑
Z⊆[m]

P
(
ri(p) = 1 ∀ i ∈ Z and 0 ∀i ∈ [m]/Z

)
×
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P
( r∗i (p) = 1 for some i ∈ [m]

ri(p) = 1 ∀ i ∈ Z and 0 ∀i ∈ [m]/Z

)
=

k∑
p=1

∑
Z⊆[m]

c(Z)P

(
r∗i (p) = 1 for some i ∈ Z

ri(p) = 1 ∀ i ∈ Z and 0 ∀i ∈ [m]/Z

)
(∵ ∀i ∈ [m]/Z, {ri(p) = 0} ⇒ {r∗i (p) = 0})

=
k∑
p=1

∑
Z⊆[m]

c(Z)P

(
r∗i (p) = 1 for some i ∈ Z

ri(p) = 1 ∀ i ∈ [m]

)
(using FIR Definition 8)

=
k∑
p=1

∑
Z

c(Z)
∑

Z′∩Z 6=φ

P

(
r∗i (p) = 1 ∀i ∈ Z ′ and 0 else

ri(p) = 1 ∀ i ∈ [m]

)
= k

∑
Z⊆[m]

c(Z)
∑

Z′⊆[m]:Z′∩Z 6=φ

t(Z)

= k
∑

Z,Z′⊆[m]:Z∩Z′ 6=φ

t(Z)c(Z ′)

In general, it is not obvious if CR is strictly less than the general min cut,

C∗. Indeed, in many cases, these two quantities match, implying that in such

cases, not only do we not need any coding, but the capacity can be achieved

by optimized tagging schemes that satisfy FIR. For example, consider a net-

work with two relays with success probabilities p(S, 1), p(S, 2), p(1, D), p(2, D)

where link losses for the same transmission are independent.

Example 1. If p(S, 1), p(S, 2), p(1, D), p(2, D) are all 1/2, we have: C({1}) =

C({2}) = C({1, 2}) = 1/4. From Figure 3.2(a), C∗ = 3/4 and from the LP

(Equation (3.12)), we can calculate that CR = 3/4. In fact, a flooding policy

achieves this rate of 3/4. So there is no reduction in the capacity under FIR.

Example 2. Consider an example where the cuts are more finely balanced:

p(S, 1), p(S, 2) = 1/2; and p(1, D), p(2, D) = 3/8. Again, C∗ = 3/4, as

explained in Figure 3.2(b). Set t({1}) = x, t({2}) = y, t({1, 2}) = z. Then:

CR = Max (1
2
x+ 1

2
y+ 3

4
z) Subject to: x, y, z ≥ 0, x+y+z ≤ 1, x+z ≤

3/4, y + z ≤ 3/4. The optimal value can be verified to be 5/8 < 3/4 = C∗.

This optimum throughput of 5/8 under FIR is achieved by routing 25% of the

packets exclusively to relay 1, 25% exclusively to relay 2 and the remaining

50% of the packets to both the relays.
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Figure 3.2: Examples.
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3.8 Quantifying the Loss of Throughput under FIR

In this section, we will use the theory from previous sections to obtain results

on the throughput attainable under FIR. We will first consider the case

where the link losses from a given transmitter seen at its various receivers

are independent. Note that this involves no assumptions on interference

between two different transmissions. As a critical tool, we will use a flooding

policy, which is defined below.

Definition 11 (Flooding policy, PF ). Each relay blindly chooses each re-

ceived packet from the source to be forwarded to the destination with prob-

ability min(1, p(i,D)/p(S, i)). In other words, the relay effectively makes a

uniformly random selection of a p(i,D)/p(S, i) fraction of its received packets

to be forwarded to the destination whenever p(i,D) ≤ p(S, i).

We named the above policy as flooding in a general sense, because every

packet that is successfully received is considered for being forwarded at any

relay. It is possible that the total number of received packets at each relay

could be more than the rate it can support to the destination, in which case

PF essentially makes a random selection of packets corresponding the max-

imum throughput it can support. The throughput of PF can be calculated

by evaluating the probability that a packet transmitted by the source in any

given time slot reaches the destination along at least one of the m relays.

Since these events are independent under our current hypothesis, we have

Lemma 20, which is obtained from calculating the probability that any given

packet reaches the destination via at least one of the relays.

Lemma 20.

C(PF ) = 1−
∏
i∈[m]

(1−min(p(S, i), p(i,D)))

3.9 A Lower Bound for Independent Erasures

Using this flooding policy, we now prove a lower bound on CR for a network

with arbitrary fixed rates from the first hop forward. This argument explicitly

bounds the loss of throughput because of the redundant transmissions arising

out of making distributed decisions at each of the relay nodes with arbitrary
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min cuts when we have independence among link successes. The bound we

provide also implies that when the capacity is low, the flooding is almost

optimal for independent losses to the first hops. We will provide the proof

on a 2-hop network for easier visualization, but the same claim holds for any

fixed rates from the first hop to the destination.

Theorem 21. Consider the relay network of Figure 3.3 with independent

losses from the source to the relays.

CR ≥ 1− e−C∗

Thus, CR/C
∗ ≥ 1 − e−1. It follows from this bound that, as C∗ → 0,

CR/C
∗ → 1

Proof. The argument is based on comparing the throughput of the flooding

policy C(PF ) with C∗, since PF is a policy that satisfies FIR. We will show

that C(PF ) ≥ 1− e−C∗ , which in turn implies the theorem since PF clearly

satisfies FIR (Definition 8).

Recall that:

C(PF ) = 1−
∏
i∈[m]

(1−min(p(S, i), p(i,D)))

Applying the definition of the mincut (see Figure 3.3 for illustration), C∗, to

the network under consideration, we see that

C∗ = min
A⊆[m]

1−
∏

i∈[m]/A

(1− p(S, i)) +
∑
i∈A

p(i,D)


Let A∗ be the arg min over A ⊆ [m] for the above equation, so that:

C∗ = 1−
∏

i∈[m]/A∗

(1− p(S, i)) +
∑
i∈A∗

p(i,D) (3.16)

Consider any i ∈ A∗. By definition of A∗, we have:

1−
∏

j∈[m]/A∗

(1− p(S, j)) +
∑
j∈A∗

p(j,D)

67



P(S,i) P(i,D)

S D

A*
Figure 3.3: Illustration of a general min cut and the set defining A∗ in this
min cut.

≤ 1− (1− p(S, i))
∏

j∈[m]/A∗

(1− p(S, j)) +
∑
j∈A∗

p(j,D)− p(i,D)

which implies:

p(i,D) ≤ p(S, i)
∏

j∈[m]/A∗

(1− p(S, j)) ≤ p(S, i) (3.17)

Thus:

C(PF ) = 1−
∏
i∈[m]

(1−min(p(S, i), p(i,D)))

≥ 1−
∏
i∈A∗

(1−min(p(S, i), p(i,D))

= 1−
∏
i∈A∗

(1− p(i,D))

(∵ p(i,D) ≤ p(S, i) ∀ i ∈ A∗ from Equation (3.17))

≥ 1−
∏
i∈A∗

e−p(i,D) (∵ 1− x ≤ e−x ∀ x ≥ 0)
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= 1− e−
∑
i∈A∗ p(i,D)

≥ 1− e−C∗ (∵
∑
i∈A∗

p(i,D) ≤ C∗ from Equation (3.16))

The above analysis characterizes the degradation through the effects of

feedback at a single node, given the rates achievable from the subsequent

hops in any general network. We next build upon this argument to obtain a

bound for arbitrary feed-forward networks where every node is restricted to

static routing and without any assumption of achievable rates from the one

hop neighbors.

Theorem 22. For a general feed-forward network with h + 1 hops, subject

to feedback independent routing, the capacity is at least fh(C∗) where f(x) =

1− e−x and C∗ is the min cut capacity.

Proof. The argument builds on the analysis in Theorem 21. Note that feed-

forward networks can be reduced to general layered networks where only

nodes at subsequent levels are connected, by introducing dummy nodes with

unit capacity links. For such a layered network, we will adopt the convention

that the sink is at level 0, and the source is at level h+1. We will define (i, j)

to be the node indexed j at level i. In this notation, the source is assumed

to be (h+ 1, 0), and the sink is (0, 0). Given any policy, P , we define P(i, j)

as the rate at which distinct packets are streaming to the sink through (i, j)

. For example, P(h+ 1, 0) is the throughput of the policy.

Consider ψ, the flooding policy satisfying FIR, and compare it with the

splitting policy, Pfs in Definition 6: A node b queues the packets that it

receives from node a in proportion to the rate r∗(a, b)
.
=
∑

Z⊆N (a) r
∗(a, b, Z)

with r∗ as in Definition 6. Note that this is a static calculation and involves no

feedback unlike Pfs or the backpressure policy, which requires queue length

information to decide every routing step. For such a policy, we make the

following claim, which can be shown using induction on i.

Claim 23. ψ(i, j) ≥ f i−1(Pfs(i, j))

The claim follows easily for i = 1. Assume that it holds for some i. We

will look at a node (i + 1, j) which is connected to (i, j1), . . . , (i, jk). Con-

sider two different 2-hop networks both with (i + 1, j) as the source and
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(i, j1), . . . , (i, jk) as relays with the same link characteristics as the feed-

forward network for the first hop. To describe the second hop capacities,

we will use the assumption that both Pfs and ψ choose the same fraction

of the incoming capacities from various nodes for the forward throughput.

Let αt be the fraction of incoming rate that is chosen by node (i, jt) for the

throughput from (i+1, j). For the second hop, the first and second networks

have capacities (α1ψ(i, j1), . . . , αkψ(i, jk)) and (α1Pfs(i, j1), . . . , αkPfs(i, jk))
respectively. Let C∗1 , C

∗
2 be the respective C∗’s. Now, we can use Theo-

rem 21 to argue that ψ(i + 1, j) ≥ f(C∗1). Using the induction hypothe-

sis, we know that αtψ(i, jt) ≥ αtf
i−1(Pfs(i, jk)). It can be shown under

this condition (using Lemma 24) that C∗1 ≥ f i−1(C∗2), which implies that

ψ(i + 1, j) ≥ f(f i−1(C∗2)) = f i(C∗2) ≥ f i(Pfs(i, j)), thus completing the

induction hypothesis.

Lemma 24. Following the notation used in Section 3.5, consider a two-

hop relay network with parameters c(Z) for the first hop and ri : i ∈ [m]

as the rates for the second hop. Let the min cut of this network be C∗1 .

Replace the second hop rates by αig(ri/αi) where g(x) = fn(x) for some n

with f(x) = 1− e−x. The new min cut C∗2 ≥ g(C∗1).

Proof. First note that for each α > 0, for the given g, we have αig(ri/α) ≥
g(ri), which can again be shown using induction on the exponent of f corre-

sponding to the given g. Therefore, it is sufficient to show that the network

with second hop capacities, g(ri), has a mincut, C ≥ g(C∗1). Let A∗ be the set

defining the min cut for the network defining C∗1 in the same sense as it was

used in proof of Theorem 21. It can further be shown that g(x1 + . . .+xn) ≤
g(x1)+. . . g(xn) by using induction on the exponent of f in the representation

of g. Using this fact (and denoting Θ = 1−
∏

i∈[m]/A∗(1− p(S, i)) for conve-

nience below), we then have: C ≥ Θ +
∑

i∈A∗ g(ri) ≥ g(Θ) +
∑

i∈A∗ g(ri) ≥
g(Θ +

∑
i∈A∗ ri) = g(C∗1)

3.10 A Counterexample for Dependent Losses

From the previous section, one wonders if we are always assured of a con-

stant factor reduction capacity in general, without either feedback or net-

work coding on at least bounded diameter networks. Naively speaking, this

70



seems plausible because correlations in the losses can only supply the relays

with implicit information that might help them synchronize their routing

more efficiently while satisfying FIR. This intuition is flawed, as the follow-

ing counterexample shows that CR → 0 even though the capacity C∗ = 1.

This counterexample can be practically motivated as an extreme case of a

situation where most of the time (with probability p to be explicated later)

the broadcast channel is bad enough to be actually useful to a very small set

of relays but occasionally experiences high strength, in which case most of

the relays receive the broadcast. We make use of the characterization of CR

from Theorem 19 in showing this fact.

Definition 12 (Network, N of size m). Let ε > 0 = 1√
m

. When the source

broadcasts, with probability ε, all relays receive the packet and with probability

1− ε, exactly one of the relays receives the packet.

c(Z) =


1−ε
m

if |Z| = 1

ε if Z = [m]

0 otherwise

and for the relay to destination, we have:

p(i,D) = 1/m ∀ i ∈ [m]

Theorem 25. For the network N , C∗ = 1, but limm→∞CR = 0

Proof. By computing the mincut, we have C∗ = 1. We shall now derive an

upper bound on the CR which tends to 0 as m→∞ using Theorem 19. This

implies the claim because of Theorem 19. Since c(Z) depends only on |Z|, and

the LP 3.12 is symmetric over i, one can set without loss of generality, t(Z) =

φ(|Z|):
∑

Z,Z′⊆[m]:Z∩Z′ 6=φ t(Z)c(Z ′) =
∑m

k=1

(
m

k

)
φ(k)(

∑
Z′:Z′∩[k] 6=φ c(Z

′)) =

∑m
k=1 φ(k)

(
m

k

)
(ε+ (1− ε) k

m
) The constraint in Equation (3.13) becomes:

m∑
k=1

(
m

k

)
φ(k) ≤ 1 (3.18)
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As for the constraint in Equation (3.14), we have:

p(S, i) =
∑

Z⊆[m]:i∈Z

c(Z) =
1− ε
m

+ ε

∑
Z⊆[m]:i∈Z

t(Z) =
m∑
k=1

(
m− 1

k − 1

)
φ(k) =

1

m

m∑
k=1

(
m

k

)
kφ(k)

Thus the second constraint becomes:

m∑
k=1

(
m

k

)
kφ(k) ≤ m

1− ε+mε
(3.19)

Thus,

CT =
m∑
k=1

φ(k)

(
m

k

)
(ε+ (1− ε) k

m
)

= ε

(
m∑
k=1

(
m

k

)
φ(k)

)
+

1− ε
m

(
m∑
k=1

(
m

k

)
kφ(k)

)
≤ ε+

1− ε
1− ε+mε

( from Equations (3.18), (3.19))

= o(1/
√
m) ( since ε =

1√
m

)

3.11 Conclusion

While network coding is necessary to achieve the maximum throughput for

multicast connections, this is not the case with wireless unicast. Rather,

network coding is a convenient way to solve the distributed routing prob-

lem without having to depend on feedback signaling to make complicated

routing choices for achieving the maximum throughput. In this context, we

analyzed a relay network and quantitatively characterized the limitations of

‘static’ routing policies that operate in a feedback independent manner. Our

characterization allows for explicitly identifying situations when there is no

loss of throughput by restricting to such simple routing policies. Further, we

show that the reduction in the throughput is controlled when the link losses

for a given transmission are independent, and could even be minimal when
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the capacity is low, on a general feed-forward network. At worst, this is 63%

and gets progressively close to 100%, as the capacity itself goes to 0. Thus, in

such a situation, network coding delivers no benefit over simpler blind rout-

ing policies in the limit of unreliable communication. Nevertheless, highly

correlated losses could lead to an unbounded loss even on a 2-hop network.

In such a situation, network coding might be unavoidable if we need to be

conservative with the feedback.
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CHAPTER 4

OPTIMAL CONTROL OF A
BROADCASTING SERVER

4.1 Introduction

Stochastic control problems on queues controlled by a broadcasting server

are considered in this chapter. By “broadcasting server,” what we mean

is an abstraction in which each service clears all the customers present in

the queue at once; i.e., the number of customers is reset to zero at any

moment at which the broadcast server fires. More precisely, we consider a

system with a dynamic audience interested in a common broadcast from a

central server. This can be modeled as a queuing system in continuous time

with customers (the audience) arriving according to a Poisson process. The

server has the ability to service the audience with broadcasts separated by an

exponentially distributed random duration, whose maximum rate is µ (and

can be controlled to any value between 0 and µ). Whenever a broadcast is

made, the entire audience present in the system at that instance is served

(i.e., the total number of customers is reduced to 0 at that instance). There

is a cost for holding customers in the system, which is specified by a cost

rate function that depends on the number of customers in the system at any

given time. The holding cost (rate) function could be monotone or even non-

monotone but convex. Our aim is to minimize the infinite horizon discounted

cost, and to understand the structure of the associated optimal policies. This

optimization is also subject to constraints on the server, for which we consider

two models, discussed next.
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4.2 Contributions and Organization

In the first model, considered in Sections 4.4, each broadcast is charged a fixed

non-negative instantaneous cost, in addition to the holding cost, which is

accumulated continuously over time. This defines a Markov decision problem

(MDP) where the state at any given time is the number of customers in the

queue. In Section 4.4, we consider convex holding costs with a fixed broadcast

cost. We show that the optimal control for the infinite horizon discounted

problem is of the threshold type. In other words, operate the server at the

maximum rate µ if the number of customers exceeds a given threshold, and at

rate zero otherwise. This result complements the existing literature on batch

processing queuing models that have typically only considered monotone

holding costs. A more general problem is to consider multiple classes of

customers (each belonging to a separate queue) where each service clears all

customers of only one given class. In this case, the control problem includes

the decision of which queue to serve at any given time.

In the second model, considered in Section 4.5, we replace the cost charged

for each service with an online hard constraint on the number of broadcasts.

To model this, we consider a “resource queue” associated with the broadcast

server, with a fixed rate of arrivals, which is depleted corresponding to each

service based on the rate at which the service is delivered. The constraint we

consider restricts the ability to operate the server subject to having a positive

resource balance. There is no explicit cost associated with the service. In

contrast with the first model, where a control can be chosen at each instant

of time, we now restrict the ability to choose the rate1 at which the broadcast

server fires to a single instance at the beginning of the interval between the

broadcasts. This transforms the problem into an MDP where the state is

the balance of the resource queue at the given time instance. For this model,

we will only address the single queue case. In Section 4.6 we step back and

address a general optimization problem that addresses a class of problems for

which we have an online hard constraint on the control actions over time. We

obtain a limiting result on the optimal value function and control where the

discount factor is small. This result addresses a setting where the individual

costs corresponding to each control action are negligible in comparison to the

1I.e., the parameter that defines the exponential distribution of the time taken for the
broadcast server to fire.
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long-term discounted cost. We then apply this result to the broadcast server

problem under consideration in Section 4.5 and provide an explicit solution

and numerical plots for linear holding costs.

4.3 Motivation

A few motivating scenarios for the general broadcast queuing model (i.e.,

each service clears the entire queue) and for the cost models we consider are

given next before we proceed further.

Queuing systems have been studied under the related batch processing

model. In this model, corresponding to a batch size of B, each service to the

queue can clear a maximum of B customers. For broadcast, B = ∞. Deb

and Serfozo [79] considered the stochastic control problem of a single queue

under batch processing, and proved that the optimal control is of threshold

type when the instantaneous cost function is monotone in the number of

customers. There is extensive literature on the batch processing model for a

single queue [80–84]; however, a common theme in all previous work is that

the holding cost is generally monotone in the number of customers. On a

related note, [85] proved that a threshold control is optimal for the standard

queuing service model (i.e. each service clears one customer) with convex

holding cost in the number of customers, and without any service cost.

Motivation for Non-Monotone Cost: A non-monotone cost model

is relevant to a situation where the server has a strategic interest in prevent-

ing the audience interested in its broadcast from being as low as possible

at all times. Such a possibility could arise in a peer to peer service model

with selfish peers, where having too few interested peers on average incurs a

high cost for the server because the server is itself predominantly only served

by other selfish peers that are actively interested in its own service. On the

other hand, keeping too many peers waiting also incurs a progressively higher

cost beyond a certain point, because the server then risks being classified as

a freeloader by its peers, leading to punishment from its frustrated peers in

the form of degraded service to itself.

The general broadcast scheduling problem arises in applications where

a central server has multiple pages with customer requests for each page

arriving independently. Each service can satisfy all outstanding requests for

76



any single page. The aim is usually to minimize either the average waiting

time for the page requests, or to minimize the maximum waiting time. A

large body of work in the database and algorithms literature has focused

on scheduling for the broadcasting model (e.g [86–91]). The emphasis is on

competitive analysis, in which oblivious online policies and optimal offline

algorithms that have a precise knowledge of the future sample path of the

customer arrivals are analyzed. Xia et al. [92] address the batch processing

problem in multiple queues. A variant with constant service time was studied

also in [93].

4.4 Broadcast Server with Fixed Service Cost

In this section, we consider a customer queue with arrivals defined by a

Poisson process of rate λ. Whenever the queue is served, all customers in the

queue exit at once. Without loss of generality, assume that λ + µ = 1. Let

c : Z+ 7→ R+ denote a non-negative holding cost rate defined as a function

of the number of customers in the queue, which we denote as xt at time t.

We assume that c is convex and also has an appropriate growth restriction to

ensure that the infinite horizon discounted cost is well defined. Let csw denote

the constant service cost associated with each broadcast. Assume that for a

given time a control value, 0 ≤ w ≤ 1, specifies the (exponential) rate of the

broadcast as being wµ. A useful way of interpreting this situation is to look

at the rate µ process consistently at all times, and then actually utilize this

potential broadcast opportunity with probability w when the control being

applied is w, an equivalence which follows directly from the Poisson splitting

property.

Now consider a rate 1 Poisson process obtained by adding the arrival pro-

cess of rate λ and the potential departure process of rate µ. Let τn be

the nth transition of this net process and let xn denote xτn for simplicity.

The discrete time jump Markov process obtained by sampling the system

between these transitions has the following transition probabilities defined

on Z+ (this discrete time process is independent of the inter-event times):

p(y/x) = λI{y = x + 1} + µ(w(x)I{y = 0} + (1 − w(x))I{y = x}, where w

denotes the stationary, feedback control as a function of the current state.
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The infinite horizon discounted cost to be minimized is:

Ew
x

∫ ∞
0

e−αtc(xt) dt+
∞∑
k=1

e−ατkχ{xk−1 6= 0 and xk = 0}csw

where Ew
x denotes the expectation with the control w starting at x0 = x, α

is the discount factor and χ denotes the indicator function for the conditions

given in its argument, and csw is the non-negative service cost associated with

each broadcast. The above expression can be shown to be a constant factor of

the equivalent cost on the discrete time process by invoking the independence

between the inter-event times and the jump process dynamics [94]. This gives

us an equivalent optimization on the discrete time Markov decision process

defined above with the following objective function:

Ew
x

∞∑
k=0

βk (c(xk) + csχ{xk−1 6= 0, xk = 0})

where 0 < β < 1 is the discount factor and cs (rather than csw) is the service

cost for the equivalent discrete time problem. We shall also use a convention

that x−1 = 0. Let w be a [0, 1] valued function on Z+ denoting the control

(i.e., w(x)µ is the rate of the broadcast server with x customers in the queue).

Let Uw denote the value function corresponding to the control w:

Uw(x) = Ew
x

∞∑
k=0

βk (c(xk) + csχ{xk−1 6= 0, xk = 0}) (4.1)

By a simple recursion argument, it can be shown that this value function

satisfies a fixed point equation corresponding to the dynamic programming

operator for Uw, given by

T wf(x) = c(x) + β(λf(x+ 1) + µ(w(x)(f(0) + cs) + (1− w(x))f(x)))

In other words,

Uw = T wUw (4.2)

Further, uniqueness of a solution to the above equation is implied by fixed

point theorem for contractions in complete metric spaces, provided we assume
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the appropriate growth restrictions on c(x) as in [85,94] (this is not restrictive,

unless we need to model a situation with super exponential costs). Let V (x)

be the optimal value function, defined as the infimum over arbitrary control

policies u, of the expected infinite horizon discounted cost starting at x :

V (x) = inf
u
Eu
x

∞∑
k=0

βk(c(xk) + csχ{xk−1 6= 0, xk = 0}) (4.3)

The fixed point equation operator for V is:

T f(x) = c(x) + β{λf(x+ 1) + µmin(f(x), f(0) + cs)} (4.4)

V is the unique solution to:

V = T V (4.5)

Given the optimal V , an optimal control w would then be:

w(x) =

1 if V (x) > V (0) + cs

0 if V (x) ≤ V (0) + cs

The main result we prove in this section is as follows:

Theorem 26. The optimal control is given by the stationary state feedback

control w(x) = I{x ≥ l∗} for a critical threshold l∗. Further,

l∗ = min{l : Ul(l) > Ul(0) + cs}

To denote w of the form w(x) = I{x ≥ l}, we will from now on write it as

wl and the value function corresponding to it as Ul. It suffices to show that

Equation (4.5) is satisfied for the operator Tw corresponding to w defined by

a threshold control in order to show that it is an optimal control. First, we

recall the definition of a quasiconvex (unimin) function:

Definition 13. A function f on Z+ is quasiconvex (unimin) if f(x + 1) −
f(x) ≥ 0 for all x > y whenever f(y + 1)− f(y) > 0.

A key element of the argument is to show that:
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Theorem 27. If Ul(l − 1) ≤ Ul(0) + cs < Ul(l), then Ul is quasiconvex.

Proof. Implied by Lemmas 28, 30 and the hypothesis that Ul(l− 1) < Ul(l).

Lemma 28. If Ul(l−1) ≤ Ul(l), then Ul(x) is quasiconvex on 0 ≤ x ≤ l−1.

Proof. Within this lemma, we will drop the subscript l and have the con-

vention that U means Ul, and denote βλ
1−βµ = γ (note that 0 < γ < 1).

Further, we denote c′(x) = c(x)/(1 − βµ). For 0 ≤ x ≤ l − 1, U(x) =

c(x) + βλU(x+ 1) + βµU(x), which in turn implies:

U(x) = c′(x) + γU(x+ 1)

= c′(x) + γ{c′(x+ 1) + γU(x+ 2)}

. . .

= c′(x) + γc′(x+ 1) + γ2c′(x+ 2) + . . .+ γl−x−1c′(l − 1) + γl−xU(l)

Let δ′(x) , c′(x+ 1)− c′(x). δ′ is increasing since c′ is convex. Also define

∆U(x) , U(x+ 1)− U(x)

Using the above definition, and from the fact that

U(l − 1) = c′(l − 1) + γU(l)

one can verify the following relation for 0 ≤ x ≤ l − 2:

∆U(x) = δ′(x) + γδ′(x+ 1) + . . .+ γl−x−2δ′(l− 2) + γl−x−1(U(l)− U(l− 1))

A sufficient condition for U(x) to be quasiconvex on 0 ≤ x ≤ l − 1 is the

existence of a ξ(x) > 0 such that ∆U(x)
ξ(x)

is increasing2 for 0 ≤ x ≤ l − 2. We

will now show this for the choice of ξ(x) = 1− γl−x−1 > 0 for 0 ≤ x ≤ l − 2.

Since ∆U(x)
ξ(x)

depends on the function δ′ in a linear fashion, we just need to

2Throughout this chapter, ‘increasing’ and ‘decreasing’ mean ‘non-decreasing’ and ‘non-
increasing’ respectively.
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verify that ∆U(x)
ξ(x)

is increasing when δ′ is a constant, and when it is of the

form I{x ≥ b}. First if δ′(x) = a for any constant a, we have:

∆U(x)

ξ(x)
= a

1 + γ + . . .+ γl−x−2

1− γl−x−1
+

γl−x−1

1− γl−x−1
(U(l)− U(l − 1))

=
a

1− γ
+

γl−1

γx − γl−1
(U(l)− U(l − 1))

which is increasing in x since (1) γ < 1 and (2) U(l) > U(l − 1), by the

hypothesis of the lemma. Next let δ′(x) = I{x ≥ b}. We then have (with

the convention that if b > l − 2, the appropriate terms below will be 0, and

hence increasing by default):

∆U(x)

ξ(x)
=
γb−x + . . .+ γl−x−2

1− γl−x−1
+

γl−x−1

1− γl−x−1
(U(l)− U(l − 1))

=
γb + . . .+ γl−2

γx − γl−1
+

γl−1

γx − γl−1
(U(l)− U(l − 1))

which is again increasing with x by the hypothesis of the lemma.

Lemma 29. Ul(x) is quasiconvex for x ≥ l.

Proof. This can be proved by considering a coupled process and using an

argument similar to that in [85]. Given an integer l, define a Markov process

on Z2
+ with the following transitions:

p((x′, y′)|(x, y)) = λI{x′ = x+ 1, y′ = y + 1}+

µI{x′ = x(1− I{x ≥ l}), y′ = y(1− I{y ≥ l})}

Then, corresponding to any initial state (x, y) the above coupled process

has marginals which are identical to the individual processes. Although the

condition (3) in [85] does not hold anymore, restrict attention to any x ≥ l

and consider the process started in (x, x+ 1). Then, yk − xk takes values in

0, 1 and is decreasing in k. Let Ex denote the expectation under this starting

condition. Let

τ = min{k ≥ 0 : xk = yk}
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As in [85], let:

r(x) =
U(x+ 1)− U(x)

Ex
∑τ−1

k=0 β
k

On x ≥ l, it can be shown that r is increasing, which implies U is quasiconvex

on the same domain. For x ≥ l:

U(x+ 1)− U(x) = Ex

∞∑
k=0

βk(c(yk)− c(xk)) = Ex

τ−1∑
k=0

βkδ(xk) (4.6)

so that:

r(x) =
Ex
∑τ−1

k=0 β
kδ(xk)

Ex
∑τ−1

k=0 β
k

Since δ is increasing and since r depends linearly on δ, it suffices to verify

that it is increasing for constants and for functions of the form I{x ≥ b}.
Since r is a constant if δ is a constant or if δ(x) = I{x ≥ b} where b ≤ x

since x ≥ l, we only have to check for I{x ≥ b} where b > x. Let

σ = τ ∧min{k : xk = x+ 1}

Then r(x) can be compared favorably with r(x+1) by writing (using b > x):

Ex

τ−1∑
k=0

I{xk ≥ b}βk = Ex[β
σI{σ < τ}]Ex+1

τ−1∑
k=0

I{x ≥ b}βk

and

Ex

τ−1∑
k=0

βk = Ex

σ−1∑
k=0

βk + Ex[β
σI{σ < τ}]Ex+1

τ−1∑
k=0

βk

Lemma 30. If Ul(l − 1) ≤ Ul(0) + cs < Ul(l), then Ul(x) is increasing on

x ≥ l.

Proof. We already know that Ul is quasiconvex for l ≤ x from Lemma 29.

Hence, it is sufficient to show that Ul(l + 1) > Ul(l) to prove that it is

increasing on x ≥ l. For the rest of the proof in this Lemma, we will again

implicitly drop the subscript l in Ul. Assume to the contrary that U(l+ 1) ≤

82



U(l). Then:

U(l) = c(l) + β{λU(l + 1) + µ(U(0) + cs)}

≤ c(l) + βU(l) (∵ U(0) + cs < U(l), U(l + 1) ≤ U(l))

U(l − 1) = c(l − 1) + β{λU(l) + µU(l − 1)}

≥ c(l − 1) + βU(l − 1) (∵ U(l) > U(l − 1))

The above two inequalities imply:

∆U(l − 1) ≤ δ(l − 1) + β∆U(l − 1)

⇒ 0 < (1− β)∆U(l − 1) ≤ δ(l − 1)

Since δ is increasing, this also means that δ(l) > 0. Then, again by a certain

coupling argument similar to Lemma 29, we have U(l + 1) > U(l). More

precisely, consider the coupled process of the proof of Lemma 29. For x0 = l

and τ , the stopping time as defined in proof of Lemma 29, xk is an increasing

sequence for 0 ≤ k ≤ τ − 1. Hence, δ(xk) ≥ δ(l) > 0 for 0 ≤ k ≤ τ − 1.

Thus, using Equation (4.6), ∆U(l) = Ex0=l

∑τ−1
k=0 β

kδ(xk) > 0, which in turn

implies that Ul(x) is increasing on x ≥ l.

Lemma 31. If c(x) is convex, unless it is decreasing on all x, we have for

some l large enough: Ul(l) > Ul(0) + cs.

Proof. Suppose Ui(i) ≤ Ui(0) + cs for all i < l. For any i < l, consider a

Markov decision problem where the only decision variable is at state x = i,

with the rest of the control fixed to match the threshold i+ 1 control, wi+1.

Now apply policy iteration to the threshold i policy on the above MDP. Since

Ui(i) ≤ Ui(0) + cs, an optimal control is to set w(i) = 0 (i.e., do not serve

at x = i), and policy iteration results in wi+1, the threshold-i + 1 control.

Hence, Ui+1 is component wise less than Ui. Specifically, this means Ui(0) is

a decreasing sequence for i ≤ l, implying that Ul(0) ≤ U1(0). Since c is not

decreasing and is convex, for some l large enough, we have c(l) > U1(0) + cs.

For such an l, if we also have Ui(i) ≤ Ui(0) + cs for all i < l, then Ul(l) =

c(l) + β{λUl(l + 1) + µ(Ul(0) + cs)} > c(l) ≥ U1(0) + cs ≥ Ul(0) + cs.

83



Theorem 32. The optimal control is a threshold policy corresponding to the

threshold l∗ given by

l∗ = min{l : Ul(l) > Ul(0) + cs} (4.7)

Proof. Suppose l∗ is infinite. Then, the contrapositive of Lemma 31 implies

that c(x) is decreasing, in which case it is clear that an optimal policy is to

never serve, which corresponds to a threshold l∗ =∞ optimal control. Thus,

we now only need to argue about the case where l∗ is finite. Now suppose

Ul∗(l
∗ − 1) > Ul∗(0) + cs (4.8)

Then consider the Markov decision subproblem where the the control is fixed

to match the threshold l∗ control for all x except for x = l∗ − 1, which is

the only decision variable. Then, by an application of policy iteration for

this subproblem, we conclude that Ul∗−1 strictly improves Ul∗ . Now if the

following is true:

Ul∗−1(l∗ − 1) ≤ Ul∗−1(0) + cs (4.9)

then we can again consider the Markov decision subproblem where the only

decision variable is at x = l∗ − 1 and everything else is fixed to match the

threshold l∗ control. Such consideration implies that Ul∗ improves Ul∗−1, a

contradiction to what we just concluded above. Hence Equation (4.9) must

be false and

Ul∗−1(l∗ − 1) > Ul∗−1(0) + cs

which contradicts the definition of l∗ in Equation (4.7). Hence, the assump-

tion in Equation (4.8) is false and we conclude that:

Ul∗(l
∗ − 1) ≤ Ul∗(0) + cs

This means that l∗ satisfies the hypothesis for Theorem 27 and hence is

quasiconvex. This implies:

Ul∗(x)

≤ Ul∗(0) + cs if x ≤ l∗ − 1

> Ul∗(0) + cs if x ≥ l∗
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Therefore, it also satisfies the fixed point equation corresponding to the

optimal value function dynamic programming operator given in Equation

(4.4).

4.5 Broadcast Server with an Online Constraint

In this section, we are interested in a problem where there is no explicit

cost per broadcast, but rather have a long-term constraint on the amount of

resources that can be used by the server. As before, we consider a continu-

ous time model. We then divide the continuous time into disjoint intervals

separated by each broadcast. We restrict the opportunity to make a control

decision to the beginning of each such time interval so as to formulate a dis-

crete time Markov decision problem whose state is the balance of resources

available for the server.

Let xt denote the number of customers waiting in the queue at time t. Let

ti be the time instant at which the broadcast server fires for the ith time.

We define [ti, ti+1) as interval i. Note that xti = 0 ∀i. The process xt is

defined by a Poisson process of intensity λi during time interval i, where λi

is a bounded i.i.d. random variable for each i. At the beginning of each

time interval, the server makes a control decision ui ∈ [0, µ] as the rate of

the broadcast server. This determines the length of the corresponding ith

time interval to follow an exponential random variable with rate equal to ui.

Associated with the server, we have a “balance” queue, b(i), which evolves

every time interval with the following dynamics:

b(i+ 1) = b(i) + a(i)− ui

where a(i) is an i.i.d. (over i) bounded random variable, with mean equal

to E[a(i)] = a ≥ 0. The server gets to observe the arrival rate λi and the

resource balance b(i) prior to making the control decision during interval i.

The cost of broadcast interval i is then defined to be ci , 1
ti+1−ti

∫ ti+1

ti
c(xt)dt.

Finally, for a discount factor β > 0, the total cost we wish to minimize is:∑∞
i=0 e

−βici.

Given an initial balance, the objective is to minimize the total expected

cost defined above subject to the hard constraint that b(i) ≥ 0 , ∀i. When
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β → 0, we provide a method to approximately solve for this problem by

solving a more general problem with a similar constraint in the next section.

4.6 Generalized Online Knapsack Problems

In this section, we describe a general class of online stochastic control prob-

lems. We show that this class of problems includes online stochastic knapsack

problems and some extensions, such as those faced by a bidder in repeated

second-price auctions, and repeated generalized second-price auctions. In the

problems considered, actions taken by a single decision maker generate utility

by consuming a resource that depends on a random and partially observable

environment. The objective of the decision maker is to take successive ac-

tions so as to maximize her infinite horizon discounted utility subject to a

constraint of maintaining a positive balance of the resource at all times.

4.6.1 A Discrete Time Continuous State Markov Decision
Model

Time. Time is discrete and indexed by i = 0, 1, 2, . . .

Random environment. A random environment impacts the pay-offs and pay-

ments. This environment is assumed to be i.i.d. over time. At time i, the

environment is described by a random variable ξ(i) with values in Rn. ξ(i),

i = 0, 1, . . . are independent and identically distributed. A generic random

variable ξ represents the typical environment, i.e., it has the same distribu-

tion as ξ(i) for any i. Let F be the sigma algebra generated by ξ. A part

of the random environment is observable. Let F0 denote the sigma algebra

(included in F) that represents the observable part of the generic random

environment.

Actions. At each time, the decision maker chooses an action u from a compact

set U . The decision maker is able to partially observe the realization of the

environment for this time period corresponding to the sigma algebra F0,

and base her decision on this partial knowledge. Formally, the action of the

decision maker can be represented by a random variable u, that is measurable

with respect to F0. As a special case, we can imagine that ξ = (ξ0, ξ1), and
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that the decision maker knows ξ0 before taking decision u. In such a case,

F0 is the σ-algebra generated by random variable ξ0.

Utility. Each action of the decision maker leads to an instantaneous utility

which also depends on the realization of the random environment. It is

represented by a measurable, continuous and bounded function, g : U ×
Rn → R. The net utility obtained is the infinite horizon discounted utility,∑∞

i=0 e
−βig(u(i), ξ(i)).

Resource constraint. The ability of the decision maker to take actions that

maximize her utility is restricted by a resource constraint. At each time slot,

the action taken by the decision maker, together with the realization of the

random environment leads to a consumption of the resource, defined by a

measurable, positive, bounded, continuous function given by c : U × Rn →
R+. It is also assumed that there exists an action which avoids consumption

of the resource, i.e. ∃ 0 ∈ U such that c(0, ξ) = 0 ∀ ξ. Besides the

consumption, the resource is also incremented by a fixed amount a in each

time slot. The initial balance at time 0 is given by b. Let b(i) denote the

balance of the resource available at the beginning of time slot i. The evolution

of the resource balance can be written as:

b(i+ 1) = b(i) + a− c(u(i), ξ(i)), b(0) = b (4.10)

The decision maker is forbidden from taking any sequence of actions that

lead to a negative balance of the resource at any point.

Objective. Consider a discrete time Markov decision process (MDP) on the

continuous state space, R+ representing the resource balance. Let u ∈ F0

denote a random variable u measurable in F0. Let U represent the collection

of all admissible Markov policies (i.e. U represents all sequences of actions,

defined by random variables u(i) ∈ F0, which can be chosen after observing

the corresponding states, b(i), with the additional restriction that any action

u(i) which leads to a strictly positive probability on the event b(i+ 1) < 0 is

forbidden). Denote ḡ(u) , E[g(u, ξ)] and c̄(u) , E[c(u, ξ)]. Then, the value

function with initial balance b(0) = b is given by:

vβ(b) = sup
U

(
Eb

∞∑
i=0

e−βiḡ(u(i))

)
(4.11)
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4.6.2 Examples

Example 1 – (Knapsack problem) Consider an online stochastic knapsack

problem with a sequence of i.i.d. objects, each with an i.i.d. payoff repre-

sented by a generic random variable v and a weight represented by a generic

random variable w. At time i, the decision maker needs to make a choice

of whether to include the object in the knapsack or not with indicator vari-

able in u(i) ∈ U = {0, 1}; a = 0; ξ = (v, w) ∈ R2, with g(u, ξ) = uv and

c(u, ξ) = uw. The random environment is also completely observable, with

F0 = F , i.e. u(i) can be decided after observing both w(i) and v(i) and the

remaining knapsack capacity, given by b−
∑i−1

j=1 u(j)w(j). The MDP in this

case with initial state b therefore corresponds to the optimization problem:

sup
∞∑
i=0

e−βiE[u(i)v(i)],

s.t.
∞∑
i=0

u(i)w(i) ≤ b.

Example 2 – (Repeated second-price auctions with budget constraints) The

decision maker is a bidder participating in a sequence of second price auc-

tions. The bidder wishes to optimize her bid based on a belief about the

opponent bid modeled according to some probability distribution. The bid-

der assumes that her optimization horizon lasts for a large random duration

modeled according to the memoryless exponential distribution with mean

1/β, where β > 0 is a fixed parameter.

Random environment is modeled as i.i.d. with ξ = (v,b), where v repre-

sents the valuation of the object/service being auctioned in each time slot,

and b denotes the competing bid. The observable part of the random envi-

ronment for the bidder is the self valuation of the object, i.e. F0 = σ(v), the

sigma algebra generated by the random variable v.

Actions and Utility: For any given time, the action, u, is the bid. The

bidder wins the auction when u exceeds the competing bid, in which case,

the utility derived is defined3 as g(u, ξ) = 1{u>b}(v − b).

3In this case, the payment made is subtracted from the object’s valuation to define the
utility because the object’s valuation is assumed to be measured in monetary units, and
the value function represents the optimal “monetary surplus” that can be generated from
a given initial balance.
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Budget constraint: The bidder is assumed to have an income stream equiv-

alent to a per unit time slot. The amount paid at the auction is given by

c(u, ξ) = 1{u>b}b.4 The bidders are restricted to participate in the auctions

subject to their ability to pay the maximum possible amount in any given

auction.

The MDP in this case involves solving for optimal bidding strategies to

maximize the infinite horizon discounted surplus monetary utility that can

be generated with a given capital and a fixed income stream, which is part

of our forthcoming paper [22].

4.6.3 Statement of Theorem and an Application to the
Broadcast Server Problem

The theorem stated in this section provides a method to approximate the

value function and the associated optimal control when the discount factor

β is close to zero. This represents a situation where the discount factor is

effective only over a large number of time slots. An alternate equivalent

view is that when β → 0, the value function is unbounded; therefore, this

represents a situation where the magnitude of transactions in individual time

slots is minuscule in comparison to the infinite horizon valuations. As far as

the notation regarding balances and valuations is concerned, the following

mnemonic is used: A capital letter variable indicates its corresponding small

letter version scaled down by a factor of β. Therefore,

Vβ(B) , βvβ(b) = βvβ(B/β)

where vβ(b) is defined as the value function of the MDP in Equation (4.11).

Theorem 33. Consider the MDP defined in Section 4.6.1. Let φ : R+ 7→ R
be defined as:

φ(x) = ax+ sup
u∈F0

(ḡ(u)− c̄(u)x) (4.12)

φ is a convex and Lipschitz function with a minimum denoted η∗ , minx≥0 φ(x).

Let f : R 7→ R+ be an inverse function to φ defined as:f(y) = min{x ≥ 0 :

4Continuity of c and g will hold in this case if we assume that the total possible bids
are finite, to avoid unnecessary technicalities.
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φ(x) = y}. Then, for all B ≥ 0, V (B) = limβ→0 βvβ(B/β) is well defined,

and satisfies the ODE:

dV

dB
= f(V ), V (0) = η∗ (4.13)

We now apply the theorem to the broadcast control problem under con-

sideration in Section 4.5 for computing the optimal policy in the limiting

scenario where β is small. Let ch(x) denote a holding cost rate function

associated with x customers in the queue waiting for service. To ease com-

putations, we assume that ch(x) = x in the below calculations. For a generic

interval that lasts for a duration T (where we count time from 0 at the be-

ginning of the interval) and has customer arrivals of rate λ denoted by the

Poisson process {Nt : t ≥ 0}, we calculate the expected cost as (let tj denote

the arrival time of the jth customer, with t0 = 0 and tk+1 = T below):

1

T

∞∑
k=0

P [NT = k] E

[∫ T

0

ch(Nt)dt|NT = k

]

=
1

T

∞∑
k=0

P [NT = k] E

[
k∑
j=0

ch(j)(tj+1 − tj)|NT = k

]

=
∞∑
k=0

P [NT = k]

(
k∑
j=0

ch(j)

k + 1

)

=
1

2
E[NT ] =

λT

2

Let u(λ, b) denote the control chosen as a function of λ for the customer

arrival process during the given interval and resource balance b, as described

in Section 4.5. Since E[T ] = 1
u(λ,b)

, the expected cost for the given interval

can now be written as λ
2u(λ,b)

. To apply Theorem 33, we need to consider

the utility as the negative of the holding cost computed above. We therefore

have:

ḡ(u(λ, b)) = −E

[
λ

2u(λ, b)

]
The consumption of the resource when applying control u (≤ µ) is given

by:

c̄(u(λ, b)) = E[u(λ, b)]
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In order to compute the φ function (Equation (4.12)), we need to evaluate:

sup
u∈F0

(ḡ(u)− c̄(u)x) (4.14)

=− inf
u∈F0

(
E

[
λ

2u(λ, b)
+ u(λ, b)x

])
(4.15)

=− E

[
1λ<2xµ2

√
2λx+ 1λ≥2xµ2

(
λ

2µ
+ µx

)]
(4.16)

The maximizing argument above is given by u∗(λ, b) = min(
√

λ
2x
, µ) (where

x can be interpreted as a function of b). More precisely, once we solve for the

value function, V (B), the optimal control as a function of the scaled balance

B = βb and customer arrival process intensity for the current interval, λ, is

given by the above equation with x = V ′(βb).

To illustrate the remaining steps in the computation of V (B) with simple

equations, we will now assume that λ is a deterministic value and then write:

φ(x) =

(a− µ)x− λ
2µ

if x ≤ λ
2µ2

ax−
√

2λx if x ≥ λ
2µ2

(4.17)

This gives:

x∗ =
λ

2(min(µ, a))2

and

η∗ = φ(x∗) =

− λ
2a

if a ≤ µ

aλ
2µ2
− λ

µ
otherwise

(4.18)

By Theorem 33, the scaled gain (negative of the cost) value function

Vβ(B) , βvβ(B/β) converges to a function, V (B), which can be computed

as the solution to the ODE y′ = f(y) with initial condition, y(0) = η∗, where

f is the inverse function to φ, given by f(y) , inf{x ≥ 0 : φ(x) = y}.
These curves are now plotted numerically below for different income levels.

We assume that λ = 1 with probability 1 and µ = 10. Figures 4.1, 4.2, 4.3

show the plots for the φ function, the value function and the optimal control

respectively as a function of the scaled balance for three different values of

the arrival/income, a.
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Figure 4.1: A plot of the φ function for three different values of a (arrival
rate to the resource balance queue.

4.6.4 Proof of Theorem 33

In order to prove the theorem, the convergence of a variant of the problem,

parametrized by exit payoffs, is first determined. The problem of interest

is subsequently shown to converge to the variant with the right exit payoff,

which characterizes the limiting value function claimed in the theorem.

4.6.4.1 Solution of Exit-Payoff Variants

For proof purposes, it is useful to introduce a variant of the given MDP,

with identical state transitions as Equation (4.10), but without the non-

negativity constraint on the actions. Instead, the variant is parametrized

with an exit payoff, η, which defines the final utility obtained when the

balance reaches a value less than or equal to zero for the first time. More

precisely, let U ′ represent the collection of all admissible Markov policies.
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Figure 4.2: A plot of the infinite horizon optimal value function (cost)
versus (scaled) balance for three different values of a (arrival rate to the
resource balance queue).

Therefore, U ′ represents all sequences of actions, defined by random variables

u(i) ∈ F0, which can be chosen after observing the corresponding states,

b(i) (but without the additional restriction on actions that could lead to

b(i+ 1) < 0). Let κ denote the following stopping time:

κ = inf{i ≥ 0 : b(i) ≤ 0}

The value function is given by:

jβ(b, η) , sup
U ′

(
Eb

κ∑
i=0

e−βiḡ(u(i)) + e−κη

)

Following prior convention, the scaled version of the value function is given

by:

Jβ(B, η) = βjβ(B/β, η/β)
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Figure 4.3: A plot of the optimal control as a function of (scaled) balance
for three different values of a (arrival rate to the resource balance queue).

To illustrate the convergence of the above problem to its continuous time

version, consider the following change of variables/notation: ti , βi,∆ti ,

ti+1 − ti = β, B(ti) , βb(i), τ , βκ and u(ti) , u(i) ∀i. Using this change

of notation:

Jβ(B, η) = sup
U ′

(
Eb

τ∑
ti=0

e−ti ḡ(u(ti))∆ti + e−τη

)
(4.19)

where τ = inf{ti ≥ 0 : B(ti) ≤ 0}. The state transitions can be expressed as:

∆B(ti) , B(ti+1)−B(ti) = (a(ti)− c̄(u(ti)))∆t

From standard results on convergence of discrete to continuous time control

problems [95], the scaled value function, J , converges to the value function
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of a continuous time control problem. To specify this, let

Ū , {u(t) ∈ F0 ∀ t ≥ 0}

V (B, η) = sup
Ū

(∫ τ

0

e−tḡ(u(t)) dt+ e−τη

)
(4.20)

where τ = inf{t ≥ 0 : B(t) = 0}, with state evolution:

dB(t)

dt
= a− c̄(u(t)),∀t ≥ 0, B(0) = B

The above problem is a deterministic continuous time optimal control

problem, whose value function has a sufficiency condition determined by

its Hamilton-Jacobi-Bellman (HJB) equation [96], which represents an ODE

with a boundary condition given by η. The boundary condition is V (0, η) =

η, while the ODE is specified by simplifying the following dynamic program-

ming relation for a small ∆t:

V (B) ≥ sup
u∈F0

(
ḡ(u)∆t+ e−∆t (V (B) + ∆t(a− c̄(u))V ′(B))

)
This gives

V (B) = aV ′(B) + sup
u∈F0

(ḡ(u)− c̄(u)V ′(B)) = φ(V ′(B))

Recall that f : R+ 7→ R, is an inverse to φ with f(y) , min{x ≥ 0 : φ(x) =

y}. φ is convex because it is the supremum over a class of linear functions.

From the definition of η∗ and the convexity of φ, it follows that φ is strictly

decreasing on [0, f(η∗)]. From Lemma 40, φ is continuous,5 implying that

f is well defined and continuous on [η∗, η0] where η0 , φ(0).6 The ODE,
dV
dB

= f(V ), V (0) = η, therefore has a continuously differentiable solution.

From the sufficiency condition of HJB, it is equal to V (B, η), the optimal

value function to the continuous time problem defined in Equation (4.20).

To summarize, we so far have:

Lemma 34. Let η ∈ [η∗, η0]. Then, limβ→0 Jβ(B, η) = V (B, η), which satis-

fies the ODE: dV
dB

= f(V ), with initial condition, V (0) = η

5In fact, φ is also Lipschitz though this fact is not necessary for the proof.
6f is also Lipschitz on [η, η0] ∀η ∈ (η∗, η0].
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4.6.5 Characterizing the Exit Pay-off

The theorem states that limβ→0 Vβ(B) = V (B, η∗). Lemma 36 and Lemma

38 together prove that limβ→0 Vβ(0) = η∗. This would imply: ∀ B ≥ 0,

limβ→0 Vβ(B) = limβ→0 Jβ(B, η∗) = V (B, η∗), proving the theorem.

Lemma 35. ∀η, h > 0, B ≥ 0, Jβ(B + h, η) ≥ Vβ(B)

Proof. Any optimal policy for Vβ(B) is also feasible for lower bounding

Jβ(B + h, η) in the exit time variant, since the set of feasible policies is less

constrained. Since the state transitions are identical in both variants, the

stopping time is ∞ in the exit time variant, which implies that Vβ(B) is an

achievable utility in the exit time variant starting from initial balance B + h

for any h > 0. 2

Lemma 36.

lim sup
β→0

Vβ(0) ≤ η∗

Proof. Lemma 34, Lemma 35 and the fact that V (B, η) is continuous in

B for any η ∈ [η∗, η0] together imply Lemma 36. Specifically, letting B =

0, η = η∗ in Lemma 35 and letting β → 0, we get ∀h > 0, limβ→0 Jβ(h, η∗) ≥
lim supβ→0 Vβ(0). From Lemma 34, we have limβ→0 Jβ(h, η∗) = V (h, η∗),

implying ∀h > 0, lim supβ→0 Vβ(0) ≤ V (h, η∗), which implies the claim due

to continuity of V . 2

An important precursor to Lemma 38 is proved next, for which the follow-

ing definition is stated first.

Definition 14. [ε-subdifferential] For ε ≥ 0, c ∈ R is called an ε-subdifferential

to a function f at x0 if f(x) + ε ≥ f(x0) + c(x− x0) ∀ x. A ‘subdifferential’

refers to the 0-subdifferential.

Lemma 37. For any ε > 0, ∃ u∗ ∈ F0 such that ḡ(u∗) > η∗ − ε and

c̄(u∗) ≤ a.

Proof. Let x∗ = sup{x ≥ 0 : φ(x) = η∗} and x∗ = inf{x ≥ 0 : φ(x) = η∗}
(both of which are finite if a > 0, and when a = 0, we have η∗ = 0, in which

case the theorem is trivially true by choosing u∗ = 0). We first consider the

case where x∗ = x∗. For any h > 0, any subdifferential of φ at x∗+h is strictly
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positive because φ(x∗ + h) > φ(x∗). Let θ(h) > 0 be small enough that any

θ-subdifferential is also strictly positive for θ < θ(h) (see Proposition 39). Let

θ = min(ε/2, θ(h)). Let ψ(u, x) , ḡ(u) + (a− c̄(u))x. Choose u∗+ ∈ F0 such

that ψ(u∗+, x
∗ + h) > φ(x∗ + h)− θ(h). Then, for any x, φ(x) ≥ ψ(u∗+, x) =

ψ(u∗+, x
∗+h)+(a−c̄(u∗+))(x−x∗−h) > φ(x∗+h)+(a−c̄(u∗+))(x−x∗−h)−θ(h),

implying that a − c̄(u∗+) is a θ(h)-subdifferential to φ at x∗ + h. Therefore,

c̄(u∗+) ≤ a. Also, since η∗ < φ(x∗ + h) < θ(h) + ψ(u∗+, x
∗ + h), we have:

η∗ < θ + ḡ(u∗+) + (a− c̄(u∗+))(x∗ + h) (4.21)

Analogously, we can pick u∗− ∈ F0 such that c̄(u∗−) ≥ a and

η∗ < θ + ḡ(u∗−) + (a− c̄(u∗−))(x∗ − h) (4.22)

Now we can choose u∗ = δu∗− + (1− δ)u∗+ where7

δ =

1 with probability α =
a−c̄(u∗+)

c̄(u∗−)−c̄(u∗+)

0 with probability 1− α =
c̄(u∗−)−a

c̄(u∗−)−c̄(u∗+)

so that: c̄(u∗) = a. Using this, inequality (4.21)× (1− α) + (4.22)× α gives

η∗ < ḡ(u∗) + θ + 2(a + C)h. Now choose any h < ε
4(a+C)

and since θ < ε/2,

we have: η∗ < ḡ(u∗) + ε.

It remains to argue for the case x∗ < x∗. For given h > 0, we may pick

u∗+ exactly as before because the subdifferential at x∗ + h is again strictly

positive. However, in this case, the only subdifferential for any x0 ∈ (x∗, x
∗)

is zero. Therefore, for any h > 0, ∃ θ(h) > 0 such that any θ−subdifferential

at x∗ − h has to lie in (−h, h). As before we can pick u∗− ∈ F0 such that

Equation (4.22) holds and a− c̄(u∗−) is a subdifferential at x∗ − h, implying

that a− c̄(u∗−) ∈ (−h, h) (where we chose θ = min(ε/2, θ(h))). If a ≤ c̄(u∗−),

we can go through the same construction as before to obtain u∗ for which

c̄(u∗) = a and η∗ < ḡ(u∗) + ε. Now suppose a > c̄(u∗−). From Equation

(4.22), we get η∗ < θ + ḡ(u∗−) + h(x∗ − h) > ḡ(u∗−) + ε if we pick h < ε
2x∗

.

Therefore, in this case, for u∗ = u∗−, we have c̄(u∗) < a and ḡ(u∗) > η∗ − ε,
as required.

2

7if c̄(u∗
+) = c̄(u∗

−) = a, then we can pick any α ∈ [0, 1].

97



Lemma 38.

lim inf
β→0

Vβ(0) ≥ η∗

Proof. It is sufficient to show that there exists a feasible policy that can

achieve a scaled infinite horizon discounted utility with a lower bound that is

arbitrarily close to η∗. Let u∗ ∈ F0 with ḡ(u∗) = η∗ and a = c̄(u∗). Consider

a policy in which the decision maker chooses the random variable u∗ in every

time slot, i.e.:

U∗ , {u∗, u∗, . . .}

Therefore, the state transitions are defined by b(i + 1) = b(i) + w(i), where

w(1), w(2), . . . are i.i.d. copies of their generic version, w , a−c(u∗, ξ), which

is bounded by |w| ≤ 1 without loss of generality, and has zero drift: E[w] = 0.

Therefore, b(i) represents a random walk with zero drift, which has a positive

probability of falling below zero. This random walk has a strictly positive

probability of going below zero. Therefore, U∗ /∈ U . Consider a modified

walk, for which, whenever b(i) ≤ 1, we set u′(j) = 0 ∀j = i, i+ 1, . . . i+ M
a

,

where M is a constant that will be fixed. For all other j, u′(j) = u∗. Clearly,

this is feasible for the original problem. Let x denote the utility achieved

by this policy starting from b(0) = M . Let τM , min{i ≥ 0 :
∑i

j=0w(i) ≤
−M + 1}. We have:

x = E

[
τ∑
i=0

g(u∗, ξ) + e−β(τ+M
a

)x

]

This can be simplified to give:

x =

(
η∗

1− e−β

)(
1− E[e−β(τM+1)]

1− E[e−β(τM+M)]

)
which implies:

Vβ(0) ≥ βe−β
M
a x = η∗e

−βM
a

(
β

1− e−β

)(
1− E[e−β(τM+1)]

1− E[e−β(τM+M)]

)
For any fixed M , as β → 0, the lower bound above becomes arbitrarily

close to η∗
E[τM ]+1
E[τM ]+M

. For large M , the expected hitting time for the asymmetric

random walk with maximum step size equal to one is at most (stochastically

bounded by) the expected hitting time of a symmetric random walk with
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step size equal to one, which scales as E[τM ] = Ω(M2). Therefore, the lower

bound is arbitrarily close to η∗, proving the lemma. 2

Proposition 39. Suppose all subdifferentials of a convex function, f , at x

belong to [dl, dh]. Then, for any δ > 0, ∃ ε > 0 small enough, such that any

ε-subdifferential of f at x belongs to (dl − δ, dh + δ).

Proof. Draw two lines, L1 and L2 with slopes dl − δ, dh + δ at x. Clearly,

there exist xl < x and xh > x such that L1 strictly dominates f in (xl, x)

and L2 strictly dominates f in (x, xh). Choose:

ε∗ = min (sup{L1(x)− f(x) : x ∈ (xl, x)}, sup{L2(x)− f(x) : x ∈ (x, xh)})

Then ε∗ > 0 and for any ε < ε∗, neither dl − δ nor dh + δ can be ε-

subdifferentials, and therefore any ε-subdifferential of f has to lie in (dl −
δ, dh + δ).

Lemma 40. φ is Lipschitz.

Proof. Let ψ(u, x) , ḡ(u)+(a−c̄(u))x, so that φ(x) = supu∈F0
ψ(u, x). Let

|x−y| < δ. Let u∗(x),u∗(y) ∈ F0 such that ψ(u∗(x), x) ∈ (φ(x)−δ, φ(x)] and

ψ(u∗(y), y) ∈ (φ(y)− δ, φ(y)] and assume ψ(u∗(x), x) ≥ ψ(u∗(y), y) without

loss of generality. Then, |φ(x)− φ(y)| ≤ δ + ψ(u∗(x), x)− ψ(u∗(y), y). Note

that ψ(u∗(y), y) > φ(y)−δ ≥ ḡ(u∗(x))+(a− c̄(u∗(x))) y−δ ≥ ψ(u∗(x), x)−
(1+ |a−C|)δ, where C is the bound on the consumption function. Therefore,

|φ(x)− φ(y)| < Mδ, where M = 2 + |a− C| is the Lipschitz constant. 2

4.7 Conclusion

In this chapter, we considered a queuing system for which each service clears

the entire queue, which we called the broadcast server model. We considered

control problems to minimize the discounted infinite horizon costs of holding

customers in the system together with two types of constraints on the server.

In the first type, each service is charged a fixed non-negative service cost.

In the second type of constraint, we have an online running constraint on

the total number of broadcasts. We formulated a general class of problems

that have the second type of constraint in Section 4.6 called the generalized
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version of an online knapsack problem, and we derived a limiting result on the

value function and the optimal control when the discount factor is effective

over a large duration. This was then applied to the broadcast server problem

with an online constraint to derive the approximately optimal control and

value functions in the limiting case.
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