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Abstract—We consider the problem of multicasting
data from a source to receivers that possess arbitrary
subsets of the data apriori as side information. Foun-
tain codes, which are an ideal solution to the standard
multicasting problem without any side information,
have also been proposed as a potential approach for
the side information problem in multiple indepen-
dent studies recently. Relevant to such a context,
we formulate and study an optimization problem
over degree distributions to minimize the overhead
necessary for complete decoding, and prove that: (i)
Degree distributions converging to the standard soliton
distribution cannot exploit side information in terms
of the overhead necessary for complete decoding. (ii)
An asymptotic shifted soliton distribution achieves an
overhead which is within a constant factor (< 2)
of the optimal overhead (iii) There exist no degree
distributions which achieve asymptotically optimal
overhead for any non trivial constant fraction of the
data as side information. While (iii) is discouraging,
this limitation can be sidestepped by using systematic
versions, where intermediate symbols are generated
from the source symbols, to which the fountain code is
then applied. One important implication of this is that
the systematic versions are in a sense indispensable
to achieve asymptotic rate optimality for the side
information problem.

I. INTRODUCTION

Multicasting via a common broadcast channel
is important for a number of practical applications
(especially relevant to the wireless medium), and its
motivation hardly needs an elaboration. One aspect
that makes it a non trivial problem is the presence
of losses, also called erasures. Forward error cor-
rection using rateless codes ([13]) simultaneously
achieves rate optimality with low encoding/decoding
complexity. In some scenarios, one is faced with
a complementary aspect, namely the apriori pres-
ence of arbitrary subsets of the source data at the
receivers, also referred to as side information. In
practice, this side information could have plausibly
been gathered from alternate sources or perhaps
from a previous incompletely decoded download
session. The issue of designing codes which exploit
the side information present at the receivers has been
considered previously by a number of authors. Met-

zner ([9]) originally identified random linear coding
as a useful approach to the context of designing an
efficient broadcast retransmission protocol, which
is essentially equivalent to the side information
problem. More recently, Birk and Kol ([2]) have
considered code design to minimize the number of
transmissions, assuming that the encoder is provided
with the complete side information pattern at the
receivers. This problem has come to be known
as index coding in its form where each receiver
requests a unique packet. [1] showed that the op-
timal linear index code can be formulated as a rank
minimization problem on finite field matrices. The
unique requests constraint can also be generalized to
arbitrary subsets of possibly non disjoint requests,
for which multicast is a practically important non
trivial subclass.

While understanding optimal index codes is
undoubtedly a crucial aspect to the multicast side
information problem (besides also being very gener-
ally related to network coding ([10])), this approach
is not directly relevant to a practical setting. Firstly,
conveying the side information at each receiver is
a task that requires too much overhead in the form
of ARQ. Further, processing the collected data to
compute the optimal code is likely to be impractical
because arbitrary rank minimization problems on
finite field matrices are computationally intractable.
Consequently, approaches that are oblivious to the
precise pattern, and those that can also simulta-
neously deal with lossy transmissions are highly
desirable.

An approach that avoids collecting feedback
from the broadcast audience is to use random linear
coding (RLC), where each coded packet is chosen
as a uniformly random combination of the source
packets. It can be shown that Random Linear Coding
achieves optimal overhead for each receiver, because
a random linear code remains a random linear code
on any subset when the side information is sub-
tracted out. However, its decoding involves Gaussian
elimination, a step with undesirably high complex-
ity. With no side information, fountain codes are



a huge improvement to RLC in complexity. A key
attribute to a fountain code is its degree distribution,
which is a probability distribution on the integers.
For each coded packet, its degree defines the num-
ber of uniform-randomly chosen packets which are
XOR-ed to form the coded packet. A design issue
is choosing the distribution appropriately, so that
the decoder can perform an inexpensive iterative
decoding (which involves picking a degree one
packet, subtracting it from the rest and continuing
till everything is decoded successfully). This can
be achieved while keeping the complexity, defined
by the expected value of the degree, of the order
logarithmic in the size of the block being coded
together. More generally, Raptor codes have an
additional layer of coding on the source symbols to
which the degree distribution is applied ([13]). This
achieves an even lower complexity at the expense
of a arbitrarily small loss of throughput. Fountain
codes have been considered in the presence of side
information previously by [5], [12], [6]. The iterative
decoding process was studied by Darling and Norris
in [4], in a context unrelated to coding. [8] first used
this result in analyzing the decoding of LT codes. [4]
gave a general result using fluid approximation to re-
late the number of received packets to the number of
decoded packets for general limiting degree distribu-
tions. This result was also applied in [11] to investi-
gate the intermediate performance of rateless codes.

Example I.1. Consider 10,000 blocks of data to
be multicast to 1000 broadcast audience across an
erasure free broadcast channel. Assume each user
has some subset of at least 9000 blocks each with
them as side information, which might be arbitrarily
scattered over the source blocks. The results of
this paper show the following implications on this
example: (1) If we use the LT coding based on the
standard distributions, it will take close to 10,000
block transmissions to complete iterative decoding
(section II-A), and hence rendering the coding al-
most useless, as naive retransmission of everything
itself takes 10,000 transmissions. (2) Degree dis-
tributions based on a simple truncation modifica-
tion can ensure that the iterative decoding can be
completed closer to less than 2000 retransmissions
(section II-B). (3) There is no degree distribution
that performs asymptotically optimal to capacity
(i.e., loss of at least a constant factor is unavoidable
asymptotically) (section II-C)

II. THE MINIMAL OVERHEAD FOR A GIVEN
FRACTION OF THE DATA AS SIDE INFORMATION

Let α > 0 represent a parameter which corre-
sponds to each receiver having an arbitrary subset of

(1−α)n packets as side information. Given any code
generated according to some degree distribution,
each decoder first subtracts out its side information
from each coded block received and then begins
iterative decoding on the resultant encoded blocks.
Let P (n) be a degree distribution with support on
[n] (i.e. corresponding to block length n), which was
used at the encoder. Let Q(n) be the corresponding
projection of P (n) obtained on any αn subset. We
can explicitly write down the relation between them
as follows (for 1 ≤ i ≤ αn, 1 ≤ j ≤ n):

Q(n)(i) =
n∑
j=0

P (n)(j)

(
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i

)(
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j−i

)(
n
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Note that, for small i and j independent of n, the

term (nαi )(n(1−α)
j−i )

(nj)
is approximated by

(
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)
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α)j−i, but this not an approximation in general.
Note that for LT code on block length n, the average
degree is of the order log n. This fact necessitates the
next lemma as non trivial even as an approximation.
Suppose as n→∞, the pointwise limits converge to
valid probability distributions P and Q respectively
on Z+. The relation between the limiting distribu-
tions P and Q is given by the following relation.

Lemma II.1. For limiting distributions P and Q
formed as above, we have:
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Similarly, we have:
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The above two inequalities imply

Q(i) =
∞∑
j=1

P (j)
(
j

i

)
αi(1− α)j−i

From the above lemma, it is easy to derive the
following relation between the generating functions:

Corollary II.2. The generating function Q(z) in
terms of P (z) is given as

Q(z) = P (1− α+ αz)

Definition II.3. Let

rn =
no. of coded packets received

αn

zn =
no. of previously unkown packets recovered

αn

When the limits exist, let r denote the limit of rn
and sα(r, P ) denote the limit of zn, where P is
the generating function of the limit of the degree
distributions used for coding on the entire source
blocks.

Recall for a sequence of distributions that converges
to a distribution with generating function, P (z)
when α = 1, [4] shows that the recovered frac-
tion (for a vanishingly small perturbed distribution)
converges to1:

s(r, P ) = inf{z ∈ [0, 1) : rP ′(z)+log(1−z) < 0}∧1

Using Corollary II.2, when the decoder subtracts out
the side information from the received coded pack-
ets, it recovers an asymptotic fraction (represented
on αn) corresponding to sα(r, P ) = s(r,Q). Thus:

Proposition 1. sα(r, P ) = inf{z ∈ [0, 1) :
rαP ′(1− α+ αz) + log(1− z) < 0} ∧ 1

To define the overhead necessary for successful
decoding of all source blocks, we thus need to solve
the following optimization problem for each given
0 < α ≤ 1:

r∗α = min
P

r (3)

Subject to : sα(r, P ) = 1 (4)

A trivial lower bound for r∗α for any 0 < α ≤ 1
is 1. We can also obtain an easy upper bound by
ignoring the side information and using the soliton
distribution. Since we know that asymptotically n
packets suffice to recover all the n packets without

1Although the conditions stated don’t apply verbatim here
either, the justification for it comes from Lemma 1 of [11]

even considering the side information, this achieves
an rα = n

nα = 1
α . This gives us:

1 ≤ r∗α ≤
1
α

(5)

Clearly, this implies r∗1 = 1, which is attained
by the capacity achieving soliton distribution used
for LT codes [7]. Some natural questions arise for
the problem under consideration: Is r∗α = 1 for
α < 1? (i.e., can we have capacity achieving
degree distributions for general α?) How bad is the
Soliton distribution as a solution to the optimization
problem in 3? (We know that its no worse than
the upper bound even after throwing away the side
information, but could it actually achieve a better
ratio because of side information?) If the Soliton is
bad, how do we design degree distributions that do
well for α < 1?

A. Performance of the Soliton distribution

Proposition 2. For a sequence of distributions with
a limiting Soliton distribution, for recovering all
unknown packets (zn → 1), we need r > 1/α. This
means that side information gives no advantage for
complete recovery.

Proof: Consider a sequence of distributions that
converge to the Soliton distribution, whose generat-
ing function, P (z) =

∑
i≥2

zi

i(i−1) . The recovered
fraction, zn (of a vanishingly small perturbed dis-
tribution) converges to: s(r,Q) , inf{z ∈ [0, 1) :
rQ′(z) + log(1− z) < 0} ∧ 1. Consider:

rQ′(z) + log(1− z)

= r
d

dz
P (1− α+ αz) + log(1− z)

= rα
d

dz

∑
i≥2

(1− α+ αz)i

i(i− 1)

+ log(1− z)

= rα
∑
i≥1

(1− α+ αz)i

i
+ log(1− z)

= rα| logα|+ (rα− 1)| log(1− z)|

From the above equation, it is clear that rQ′(z) +
log(1− z) > 0 ∀z ∈ [0, 1) iff rα > 1.

B. k-lifted Soliton distribution

Consider the k−lifted Soliton distribution defined
by the following generating function (where k will
be chosen later):

P (z) =
∑
i≥k+1

k

i(i− 1)
zi



The idea of shifting the distributions was also con-
sidered by the authors in [6] (although the parame-
ters are different).

Proposition 3. For k = b1/1.82αc, the k-
lifted Soliton distribution requires at most r =
1/(αb1/1.82αc) for complete recovery.

Proof: First we lower bound Q′(z) for z ∈
[0, 1).

Q′(z) =
∑
i≥k

αk
(1− α+ αz)i

i

= αk

(
− log(α− αz)−

k−1∑
i=1

(1− α+ αz)i

i

)
≥ αk (| logα|+ | log (1− z)| −Hk−1)(

where Hk is the kth Harmonic number
)

≥ αk
(
| logα|+ | log (1− z)|

−
(

log k + γ +
1

2n+ 1
3

))
(Using a bound from [3],
where γ ≈ 0.578 is the Euler constant)
≥ αk (| logα| − log (1.82k) + | log (1− z)|)

Given r, we thus have for z ∈ [0, 1):

rQ′(z) + log (1− z)
≥ rαk (| logα| − log (1.82k)) +
(rαk − 1)| log (1− z)|

The choice of k = b1/1.82αc ensures that the first
term above is non negative. For such a k, note
that the second term is also non-negative for all
z ∈ [0, 1) for the given choice of r, implying that
s(r,Q) = 1.

C. Lower Bounds on the Optimal Overhead

In this section, we prove lower bounds for the
optimal decoding overhead required for any degree
distribution for any given fraction α defining the
side information. This shows that r∗α could be
strictly greater than 1 for general α, which was
also conjectured in [12]. This is accomplished by
considering an intermediate performance problem
inspired by [11]. We now move on to the details
of the argument. The optimization in Eq (3) can be
rewritten as the following:

r∗α = min
P

r

Subject to ( ∀ 0 ≤ t < 1):∑
i≥1

rαipi(1− α+ αt)i−1 + log (1− t) ≥ 0 (6)

Choose some large integer m and consider the
following related problem (which can also be in-
terpreted as an intermediate performance problem):

rα,m = min
P

r

Subject to:∑
i≥1

rαipi(1− α+ αt)i−1 + log (1− t) ≥ 0 (7)

∀ 0 ≤ t < 1− 1/α(m+ 1)

We just replaced the constraints in Eq (6) with a
proper subset in Eq (7) and thus,

rα,m ≤ r∗α ∀ m

Further it can be verified that:

i(1− α+ αt)i−1 < m(1− α+ αt)m−1

∀ i > m, t ≤ 1− 1/α(m+ 1)

The above condition can be shown to imply that we
can restrict attention to pi = 0 ∀ i > m in the above
optimization defining rα,m. Hence we obtain:

rα,m = min
P

r

Subject to:
m∑
i=1

rαpii(1− α+ αt)i−1 + log (1− t) ≥ 0

∀ 0 ≤ t < 1− 1/α(m+ 1)

By setting ai = rpi, we get the following LP:

rα,m = min
A

m∑
i=1

ai

subject to:
m∑
i=1

αi(1− α+ αt)i−1ai ≥ − log (1− t)

∀ 0 ≤ t < 1− 1/α(m+ 1)

The dual of the above LP can be written as :

ξα,m = max
µ

∫
t∈[0,1−1/α(m+1))

−log(1− t)dµ(t)

Subject to: (∀ 1 ≤ i ≤ m)∫
t∈[0,1−1/α(m+1))

αi(1− α+ αX)i−1dµ(t) ≤ 1

where, µ is a measure on [0, 1 − 1/α(m + 1)].
Further, any feasible solution above is a lower bound
to

ξα,m ≤ rα,m ≤ r∗α



Fig. 1. A plot of our lowerbound on the overhead, represented
as a percentage of αn.

Thus, we can optimize over a subclass to obtain
the required lower bounds. One possibility is to
take µ as a discrete distribution with finite support.
In this case, the dual defined above becomes a
finite dimensional linear program, for which we can
use linear programming to compute the bound. We
plot the best bounds we have numerically computed
using this approach in the Figure II-C rescaled to be
expressed as percentage overhead corresponding to
each α in the range 0, 1. As we can see, for most
α (except when it is very close to 1), we were able
to find a lower bound strictly greater than the 1.

III. A SOLUTION USING SYSTEMATIC LT CODES

Systematic fountain codes were introduced in [13].
Let x1, . . . , xk be the original source symbols.
These are first transformed into intermediate sym-
bols, y1, . . . , yk to which a degree distribution is
then applied to generate the actual code symbols.
The intermediate symbols are designed such that
when the fountain code is applied to them, it results
in the original source symbols at some subset of
k positions in the first k(1 + ε) generated code
symbols, where ε > 0 is small. The code to be
applied with side information is a slight modification
of the systematic code in the following sense: After
creating the intermediate symbols, the encoder starts
generating output symbols omitting the first k(1+ε)
symbols which contain the systematic part. The
decoders put together the side information they have
along with the received code symbols, and these
symbols together form an LT code over the inter-
mediate symbols, by design. Thus, each receiver is
able to optimally recover the intermediate symbols,
and from them subsequently, the source symbols.

Approaches based on systematic raptor codes have
been previously discussed in [12], [5].

Remark 1. Note that this resultant systematic code
may not be generated by employing any degree dis-
tribution directly on the source symbols x1, . . . , xk.
This is the reason why the lower bound computed
previously does not apply to this type of coding.

Note that for systematic LT codes, as pointed out
in [13], the complexity per symbol can be made
to scale logarithmically in block length. Alternately,
one could also use a general systematic raptor code.
In such a case, the decoding complexity at the
receivers is constant time, but the encoder needs to
perform a Gaussian elimination step for calculating
the intermediate symbols, which involves a linear
complexity per each intermediate symbol generated.
In this sense, one can trade a per symbol linear
complexity at the encoder rather for a logarithmic
complexity in exchange for a constant over loga-
rithmic complexity at each of the decoders by using
systematic Raptor codes over systematic LT codes
for the side information problem.
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