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1 Introduction

We consider the problem of learning representations using a combination architecture consisting of
generative/recognition networks, where the goal is to simultaneously achieve rich representations
along with fast inference/training, similar in spirit to [1, 2, 3, 4, 5, 6]. The use of a directed belief
network for the recognition part helps in training the generative model, but is also useful purely as
a tool for efficient inference (e.g.[7, 8]). For a generative model density p parametrized by θ, and
any other density q (e.g. the recognition density, parametrized by φ), conditioning on the evidence
v, we have the following equations (reviewed in Section 7.1):

log p(v) = Eq(h|v)

[
log

p(h,v)

q(h|v)

]
+ KL(q(h|v)||p(h|v))

∇θ log p(v) = Ep(h|v) [∇θ log p(h,v)] = Eq(h|v) [∇θ log p(h,v)] +∇θKL (q(h|v)||p(h|v))

Although the generative and the recognition network each individually contains a representation of
the data, the task of jointly training them may be viewed as an approximation to training the gener-
ative model alone. Variational methods are able to drop the second term in the above gradient for θ
by instead estimating ∇φKL (q(h|v)||p(h|v)) and then performing gradient ascent on an expanded
collection of parameters (θ,φ). However, the path taken by θ during gradient ascent on the evidence
lower bound in variational methods (which corresponds to dropping the KL divergence) clearly de-
pends on the class over which q is optimized. In mean field methods [9] that use independence
assumptions, the parameters φ need to be recomputed from scratch for each inference instance. By
contrast, using a directed recognition network with parametrized edge weights allows learning an
inverse factorization of the generative model directly. However: (1) it may not necessarily contain
the density implied for inference; and (2) training the recognition model parameters is a challenging
problem, even with a fixed θ.

We propose a class of parametrized densities called Resampled Belief Networks (RBN), which are:
(1) at least theoretically, capable of representing the exact inverse and (2) introduce an additional
lever to control the variance of gradient estimates. An RBN augments the recognition directed
belief network with a resampling scheme designed to tighten the gap between the recognition and
generative densities. In Section 2, we characterize the density achieved by an RBN in terms of the
constituent directed network and the resampling rules. Using this characterization, in Sections 3
and 4 we develop a scheme to break down a given recognition/generative model into corresponding
resampling constraints. Another motivation for this approach is to achieve tradeoff points along a
continuum between monte carlo approaches with perfect accuracy but impractical computational
expense, and variational approximations with much better computational expense.

2 Resampled Belief Networks (RBN)

Let R be a directed belief network on x = (x1, . . . , xn) that samples from x1 to xn using:
r(x) =

∏n
i=1 ri(xi|xpar(i)). By an RBN, we refer to the sampler defined in Algorithm 1,
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by augmenting R with (i) resampling constraints specified using a collection of constraint func-
tions, C = {C1, . . . , Cn}, where each constraint1, Ci : x[i] 7→ (0, 1]; and (ii) jump rules
∆ = {∆1, . . . ,∆n} where ∆i ∈ {0, . . . , i− 1} specifies the node from which resampling needs to
be done when constraint i fails.

Algorithm 1 Sampling definition of RBN(R,C,∆).
1: i = 1.
2: while i ≤ n do
3: xi ← sample from ri(.|xpar(i)).
4: u ∼ U [0, 1].
5: if u > Ci(x) then
6: i← ∆i.
7: i← i+ 1.
8: Output sample x = (x1, . . . , xn).

Theorem 1 (Density characterization). LetZi(x) , E[Ci(x)|(x1, . . . , x∆i)], where the expectation
is with respect to the density induced on (x1, . . . , xi) prior to constraint i. Then, the sampling
density of Algorithm 1 satisfies q(x) = r(x)

∏
i Ci(x)∏
i Zi(x) .

Note that Zi denotes the probability that a randomly generated sample is accepted by constraint i as
a function of the sampled nodes prior to the resampling point.
Corollary 2. If Zi(x1, . . . , x∆i

) = Zi, i.e. independent of its arguments, then q(x) =
1
Z r(x)

∏
i Ci(x), where Z is the appropriate normalizing constant. A useful special case is that

of always resampling from the start, i.e. ∆i = 0 ∀ i.

3 Generative/Recognition Network architecture with RBN

Assume all variables are binary and let p(x) denote the distribution implied by a generative model,
parametrized by the vector θ. Let the recognition model contain a directed belief network with
distribution r(x), whose parameters are contained in the vector φ. The energy functions for rele-
vant distributions will be composed from ai(x) and bi(x) defined below, where pa(i) refers to the
generative model.

ai(x) =

{∑
j∈pa(i) θjixj if xi = 1

−
∑
j∈pa(i) θjixj if xi = 0

, bi(x) =

{∑
j<i φjixj if xi = 1

−
∑
j<i φjixj if xi = 0

(1)

Using the shorthand operator f+(x) , log(1 + ef(x)), we will rewrite the usual expression for the
distributions as follows.

r(x) =
∏
i≥0

e−(
∑
j<i φjixj)xi

1 + e−(
∑
j<i φjixj)

=
∏
i≥0

e−b
+
i (x), and p(x) =

1

Zp

∏
i

e−a
+
i (x) (2)

The identity is easily verified by considering xi ∈ {0, 1} separately.2 Let the constraint functions
be defined by their negative log likelihoods, cj(x) ≥ 0 over the constraint index j, i.e., Cj(x) =

e−cj(x). For now, we will only consider jump rules with ∆i = 0 ∀i, although this is not necessary
to satisfy Equation (3) as long as Corollary 2 is valid. From Theorem 1, the recognition network
samples from:

q(x) =
1

Zq

∏
i≥0

e−b
+
i (x)

∏
j

e−cj(x) ,
γq(x)

Zq
(3)

1Let [i] , {1, 2, . . . , i}. Furthermore, we abuse notation and write the element, rather than the set which is
being mapped, for clarity. Note that Ci are functions that depend only on the first i variables of x. However,
for reducing notation clutter, we use Ci(x) with the implicit recognition that the components of x outside [i]
are irrelevant.

2Note that Zp = 1, but we write it in the above equation explicitly to reuse the equation with separate
hidden and visible variables. For that purpose, the index i may be allowed to have terms beyond the indices of
the sampling variables.
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Note that rejection sampling is analogous to using a single constraint function, c(x) = c +∑
i a

+
i (x)−

∑
i≥0 b

+
i (x), where c is any constant chosen large enough to ensure that c(x) ≥ 0 ∀x.

An interpretation of the subclass of jump rules for which ∆i = 0, is to view them as approximately
breaking down a large rejection event into smaller sequential pre-emptive steps, thereby improving
the sampling efficiency, possibly exponentially.

Proposition 3.

Let: A(x) ,
∑
i

a+
i (x)−

∑
i≥0

b+i (x)−
∑
j

cj(x), and Ā(x) , A(x)− Eq [A(x)] (4)

Then, KL(q||p) = log
(
Eq
[
e−Ā(x)

])
, and ∇φ KL(q||p) = COV (A(x),∇φA(x)) (5)

Furthermore, when KL(q||p) ≈ 0, an approximation to the KL divergence is KL(q||p) ≈
VAR(A(x))/2.

The proof is provided via Theorem 7 in the Appendix. In fact, it is worth noting that Theorem
7 is stated for arbitrary unnormalized distributions and not specifically for RBNs. The claim
about the approximation is justified by making use of the second order Taylor approximation
e−x ≈ 1− x+ x2/2 in Equation (5). While Equation (5) suggests the importance of controlling the
variance of A(x) to estimate gradients for the recognition network, Proposition 3 also suggests that
achieving a low variance for A(x) would require having access to a sampler with an approximately
accurate inferential density, implying a chicken and egg situation. This justifies the claim made in
the introduction that RBNs contain a lever for variance control of the gradient estimates.

4 Derivation of Resampling Constraints from the Generative Model

In this Section, we use the above framework to propose one possible general design for the resam-
pling constraints without making any assumptions on the generative model. The basic observation
underlying this proposal is that, under the target sampling density p(x), the functions a+

i (x) have
a uniform concentration bound over all possible parameters. This property, formalized in Lemma
4, therefore suggests that whenever a generated sample violates this concentration property by an
appropriately large margin, it could be considered a credible signal to resample.

Lemma 4. a+
i (x) < 0.7 + 0.75k with probability at least 1 − 1/k2, uniformly across θ, i and

sigmoid generative sample densities p(x) defined in Equation 2 (with Zp = 1).

The proof is provided in the appendix. Let: St = {i : pa(i) ∈ [t] and pa(i) /∈ [t− 1]}, for t ∈ [n].
That is, St represents the constraints that are revealed at step t in the recognition network. It is
helpful to rewrite Equation (4) as:

A(x) =

n∑
t=1

At(x)−
∑
j

cj(x), where At(x) ,
∑
i∈St

a+
i (x)− b+t (x) (6)

For an arbitrarily general factorization of p(x) with no structure, St may be non-empty only when
t = n, but it could be subject to a more uniform “revelation schedule” in structured factorizations,
e.g. layered networks ([3]). The concentration property for individual a+

i (x) in Lemma 4 can be
generalized to the functions At(x), even though the different ai(x) are correlated, to obtain appro-
priate bounds that only depend on the size of St. This motivates the class of constraint functions in
Equation (7), where {Tt : t ∈ [n]} may be considered as additional parameters complementary to
the edge weights φlm in determining the recognition density q.

ct(x) = (At(x)− Tt)+ ∀t ∈ [n] (7)

This implies: A(x) =
∑n
t=1

(
At(x)− (At(x)− Tt)+

)
. From this equation, it is clear that setting

Tt small enough will ensure that Var(A(x)) ≈ 0, which in turn implies that KL(q||p) ≈ 0. However,
this could be infeasible due to an untenable sampling efficiency. By contrast, setting Tt large disables
all constraints, and the sampling density of the RBN remains unaltered from R.
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5 Experimental Observations

We run numerical experiments using two synthetic binary 100 node sigmoid belief network gen-
erative/recognition architectures, (Ri, Gi) for i ∈ {rev, nr}, where Ri is part of the recognition
density and Gi is its generative counterpart. Our initial focus is not directly on training (Ri, Gi),
but to first study the effects of introducing the proposed resampling framework on top of the stan-
dard architecture. Grev is chosen to correspond to a reversible markov chain, due to its property
that its exact inverse factorization has identical parameters as Gi. However, the exclusively one
step dependencies might be expected to result in weak constraints across nodes, suggesting that this
may be a pathological case for demonstrating any potential benefits of resampling. Rrev was fixed
to be a small perturbation from the perfect inverse factorization. By contrast, Gnr had randomly
sampled edge weights from each node upto its 10 immediate parents. Rnr had full connectivity with
randomly sampled edge weights. The choice of the thresholds Tt, left unspecified in Section 4, is
chosen according to the following heuristic for both experiments: First, for each t ∈ [n], we form
Monte Carlo estimates for the mean, µ̂t and standard deviation, σ̂t, for samples of At(x) defined in
Equation (6) under Gi. Given a uniform (across t) control parameter, called gap, we then choose
Tt = µ̂t + gap ∗ σ̂t. Finally, gap is adjusted according to a multiplicative rate control heuristic
that responds to the sampling efficiency. We find that the control variable gap is more instrumental
in the case of nrev. The following three statistics are shown in the appendix in Figure 1 across
the trajectory of the gap variable for the resulting RBNs, on each of rev and nrev: (1) NLL (2)
Sample efficiency (3) VAR(A(x))/2 (which may be considered a proxy for the KL distance achieved
as explained in Proposition 3).

6 Amortization of Inference and Training Equations

In this section, we consider the problem of training the RBN. Split x = (v,h), where v =
(x1, . . . , xi) and h = (xi+1, . . . , xn) represent the visible/hidden parts, and restrict φ to those
parameters that only affect the conditional density of h given v. The gradient in Equation (5) can
be rewritten using the law of total covariance as:

∇φ KL(q||p) = Ev [COVh(A(x),∇φ log γq(x))] + COVv (Eh[A(x)],Eh[∇φ log γq(x)]) (8)

In the above equation, subscripts of operators refer to the variables over which we are not con-
ditioning, i.e. considering as random variables. Using arguments similar to the proof of Theo-
rem 7, we can write Eh [∇φ log γq(v,h)] = ∇φ logZqv , where Zqv =

∑
h γq(v,h). By defin-

ing qv, pv as the conditional densities of q and p on h given v, and applying ∇φ KL(qv||pv) =
COVh(A(v,h),∇φ log γq (v,h)), we may write Equation (8) as:

∇φ KL(q||p) = Ev [∇φ KL(qv||pv)] + COVv (Eh[A(x)],∇φ logZqv ) (9)

From the above equation, we see that Zqv being independent of v (can still depend on i or the
edge weights) is a sufficient condition to equate the second term is zero. In this case, the parameter
training can be averaged out over different inference instances. For an RBN, Zqv is equal to the
probability of acceptance of a sample x starting from v, provided that ∆j = i ∀ j > i. Therefore,
any node in the network where the probability of acceptance for samples generated from that point
is independent of the values of the nodes that were sampled previously can serve as an amortization
point for training the parameters of the recognition network. Since the acceptance probabilities in
an RBN can be controlled via threshold parameters, this suggests one possible way to exploit this
observation in practice. Theorem 5 provides a summary of the derivations for the gradients of the
training parameters in an RBN.
Theorem 5. Let φlm be the weight parameter connecting node xl to node xm (l < m) in the
recognition network, R. Let Tm denote the threshold parameter in cm(x) according to Equation (7)
for the RBN. With σ(x) , (1 + e−x)−1, we get the following expressions for gradients, where we
define µm(x) as the conditional expected value of xm for the belief network R, given all its parents.

−∂KL(q||p)
∂φlm

= COV (A(x), (1− µm(x))xlxmσ (Tm −Am(x)))

∂KL(q||p)
∂Tm

= COV (A(x), σ (Am(x)− Tm))

4



An interesting direction for future work is to evaluate simultaneous training of edge weight param-
eters alongside learning the resampling thresholds and comparing it with the heuristic learning rule
that was used in Section 5.

7 Appendix

This Section provides proof details, as well as a figure reporting some numerical observations in
experiments.
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Figure 1: The top row figures show the statistics for a reversible Markov Chain on 100 binary
nodes, for which the conditionals p(xi+1|x1:i) = p(xi+1|xi), correspond to the transition matrix[
0.7 0.3
0.2 0.8

]
. The prior for the first node was chosen to achieve reversibility, i.e. the stationary

distribution. The bottom row depicts results from an experiment where the generative network
was fixed using a distribution where each node has a conditional that depends on the previous ten
sampled nodes, where the corresponding edge weights were chosen by sampling from a standard
normal. The gap variable refers to a uniform control parameter for the threshold parameters across
all nodes according to the mechanism described in Section 5. Each depicted point is an average
over 10, 000 samples of the corresponding RBN resulting from the threshold rule defined by the gap
variable. NLL refers to the negative log likelihood of samples generated by the RBN evaluated with
respect to the corresponding generative density. The effective samples depict the factor overhead
that results from resampling. All resampling rules implemented correspond to ∆i = 0 ∀i.

Theorem (Density characterization). Let Zi(x) , E[Ci(x)|(x1, . . . , x∆i)], where the expectation
is with respect to the density induced on (x1, . . . , xi) prior to constraint i. Note that Zi denotes the
probability that constraint i fails, as a function of the nodes prior to the resampling point. Then, the
sampling density of Algorithm 1 satisfies q(x) = r(x)

∏
i Ci(x)∏
i Zi(x) .

Proof. [Proof of Theorem 1] Wherever convenient, we will use x1:i to denote (x1, . . . , xi). Let
qk(x1:k) be the sampling density of x1:k, at the point where i = k, just prior to Step 7. Therefore,
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the density we are evaluating, q(x), is equal to qn(x). Note that qk(x1:k) is not necessarily equal
to the marginal density of qn on x1:k. Let qk(x1:i) denote the marginal density of qk on x1:i,
and let qk(xi+1:k|x1:i) denote the appropriate conditional density. The proof will use induction
on n. The base case is trivial, and assume that the induction hypothesis holds for n − 1. Let
accept , 1{u ≤ Cn(x)} in Step 5, so that P (accept|X) = E[Cn(x)|X] for any random variable
X . Conditioning on x1:∆n :

qn((x∆n+1, . . . , xn)|x1:∆n
) = P ((x∆n+1, . . . , xn)|accept,x1:∆n

)

= P (((x∆n+1, . . . , xn), accept)|x1:∆n
) /P (accept|x1:∆n

)

= qn−1((x∆n+1, . . . , xn−1)|x1:∆n)r(xn|x1:n−1)Cn(x)/Zn(x1:∆n)

Noting that the marginals of qn and qn−1 are identical on x1:∆n ,

qn(x1:n) = qn(x1:∆n
)qn((x∆n+1, . . . , xn)|x1:∆n

)

= qn−1(x1:∆n
)qn−1((x∆n+1, . . . , xn−1)|x1:∆n

)r(xn|x1:n−1)Cn(x)/Zn(x1:∆n
)

= qn−1(x1:n−1)r(xn|x1:n−1)Cn(x)/Zn(x1:∆n)

The proof follows by appealing to the induction hypothesis in the last equation. �

Remark 6. The constraints were defined over the index set [n] for clarity of presentation. However,
the characterization identified also generalizes to an arbitrary index set, with Cj : xAj 7→ (0, 1]. In
this case, Step 5 is a loop over {j : Aj ⊆ [i] and Aj 6⊆ [i−1]}. A natural resampling rule to consider
here would be: ∆j = min{Aj} − 1, although the characterization remains valid regardless.

Theorem 7. Suppose p(x) = γp(x)/Zp and q(x) = γq(x)/Zq , where only q depends on φ. Let
A(x) , log γq(x)− log γp(x); and Ā(x) , A(x)− Eq [A(x)]. Then:

KL(q||p) = log
(
Eq
[
e−Ā(x)

])
(10)

∇φ KL(q||p) = COVq (A(x),∇φA(x)) (11)
where the subscript q refers to the density used to generate the samples of x.

Proof.

KL(q||p) = logZp − logZq + Eq [log γq(x)− log γp(x)]

= log

(∑
x

γp(x)

Zq

)
+ Eq [log γq(x)− log γp(x)]

= log

(
Eq
[
γp(x)

γq(x)

])
+ Eq [log γq(x)− log γp(x)]

= log
(
Eq
[
e−A(x)

])
+ Eq [A(x)] = log

(
Eq
[
e−Ā(x)

])
For the gradients, differentiating the first equality for KL(q||p), we get: ∇φ KL(q||p) = D1 −D2 −
D3, where D1 = ∇φEq [log γq(x)], D2 = ∇φEq [log γp(x)], D3 = ∇φ logZq .

D1 = ∇φEq [log γq(x)] =
∑
x

∇φ [q(x) log γq(x)]

=
∑
x

(
q(x)

γq(x)
∇φγq(x) + log γq(x)∇φq(x)

)
=

1

Zq
∇φZq +

∑
x

q(x) log γq(x)∇φ log q(x)

=D3 + Eq [log γq(x)∇φ log q(x)]

Similarly, D2 = Eq [log γp(x)∇φ log q(x)], which implies:

∇φ KL(q||p) = Eq [(log γq(x)− log γp(x))∇φ log q(x)]
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Note that∇φ log q(x) = ∇φ log γq(x)−D3 = ∇φ log γq(x)− Eq [∇φ log γq(x)], where:

D3 = ∇φ logZq =
1

Zq

∑
x

∇φγq(x) =
1

Zq

∑
x

γq(x)∇φ log γq(x) = Eq [∇φ log γq(x)]

This implies:

∇φ KL(q||p) = Eq
[
(log γq(x)− log γp(x))∇φ log γq(x)

]
(12)

= COV (log γq(x)− log γp(x),∇φ log γq(x)) (13)

which completes the proof since∇φ log γq(x) = ∇φA(x). �

Lemma. a+
i (x) < 0.7+0.75k with probability at least 1−1/k2, uniformly across θ, i and sigmoid

generative sample densities p(x) defined in Equation 2 (with Zp = 1).

Proof. [Proof of Lemma 4] Denote αi ,
(∑

j∈pa(i) θjixj

)
. Then, VAR(a+

i (x)) ≤ E[(a+
i (x))2] =

E[E[(a+
i (x))2|αi]] < 0.6 from Lemma 8. Similarly, E[a+

i (x)|αi] ≤ ln 2, again from Lemma 8. The
claim then follows as an application of Chebychev’s inequality. It is also feasible to obtain tighter
concentration bounds using exponential versions of the inequality. �

Lemma 8. Suppose X = [α (1{x = 1} − 1{x = 0})]+, for any constant α, where x has the
sigmoid distribution with probability e−αx

1+e−α , for x ∈ {0, 1} and a+ , log(1 + ea). Then:
0 ≤ E[X] < log 2 ≈ 0.693 and E[X2] < 0.6 and VAR(X) < 0.5 for any α.

Proof. The proof of this claim can be obtained by explicitly computing the below functions of α
for k = 1, 2:

E[Xk] =
logk(1 + eα)

1 + eα
+

logk(1 + e−α)

1 + e−α

Note also, that arbitrarily high moments of X have bounds that are independent of α. �

Theorem. Let φlm be the weight parameter connecting node xl to node xm (l < m) in the recog-
nition network, R. Let Tm denote the threshold parameter in cm(x) according to Equation 7 for the
RBN. With σ(x) , (1 + e−x)−1, we get the following expressions for gradients, where we define
µm(x) as the conditional expected value of xm for the belief network R, given all its parents.

−∂KL(q||p)
∂φlm

= COV (A(x), (1− µm(x))xlxmσ (Tm −Am(x)))

∂KL(q||p)
∂Tm

= COV (A(x), σ (Am(x)− Tm))

Proof. [Proof of Theorem 5]

−∇φ log γq(x) = ∇φ

∑
i≥0

b+i (x) +
∑
j

cj(x)


=
∑
i≥0

σ(bi(x))∇φbi(x) +
∑
j

∇φcj(x), where σ(x) =
(
1 + e−x

)−1

Consider the parameter φlm, which is the weight parameter connecting node xl to node xm in the
recognition network, where l < m. The only non-zero term in the first summation is for i = m.
Recalling Equation (1), we obtain:

−∂ log γq(x)

∂φlm
= σ(bm(x))xlxm +

∑
j

∂cj(x)

∂φlm
= (1− µm(x))xlxm +

∑
j

∂cj(x)

∂φlm
(14)

where, we define µm(x) as the conditional expected value of xm given all its parents in the recog-
nition network, R, so that σ(bm(x)) = 1− µm(x).
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Referring back to Equation (14), we see from Equation (7) that ∂cj(x)
∂φlm

6= 0 only for j = m, which
is:

∂cm(x)

∂φlm
= −σ (Am(x)− Tm)

∂b+m(x)

∂φlm
= −σ (Am(x)− Tm) (1− µm(x))xlxm

Using this to simplify Equation (14), we get:

−∂ log γq(x)

∂φlm
= (1− µm(x))xlxm(1− σ (Am(x)− Tm)) = (1− µm(x))xlxmσ (Tm −Am(x))

(15)
The corresponding equation for Tm is:

∂ log γq(x)

∂Tm
= σ (Am(x)− Tm) (16)

�

7.1 The Variational Equation and its Gradients

This subsection contains a review of the variational equation and its gradients. Let v,h be visi-
ble/hidden parts of a random vector. Let θ be a scalar parameter for their joint distribution, p(v,h).

∂ log p(v)

∂θ
=

1

p(v)

∂p(v)

∂θ
=

1

p(v)

∑
h

∂p(v, h)

∂θ
=

1

p(v)

∑
h

p(v,h)
∂ log p(v,h)

∂θ

=
∑
h

p(h|v)
∂ log p(v,h)

∂θ
= Ep(h|v)

[
∂ log p(v,h)

∂θ

]
Suppose, we use a tractable q(h|v) to compute the above expectation instead:

∂ log p(v)

∂θ
= Ep(h|v)

[
∂ log p(v,h)

∂θ

]
= Eq(h|v)

[
∂ log p(v,h)

∂θ

]
+
∂KL(q(h|v)||p(h|v))

∂θ
(17)

Even if we solve the inference problem approximately accurately (i.e. with q close to p), we may
be off the mark when attempting to improve the model because of the second term. To obtain the
second equality of Equation (17), consider:

log p(v) = log p(v,h)− log p(h|v) for any h

=
∑
h

q(h|v) log p(h,v)−
∑
h

q(h|v) log p(h|v) for any distribution q on h

=
∑
h

q(h|v) log
p(h,v)

q(h|v)
+
∑
h

q(h|v) log
q(h|v)

p(h|v)

=Eq(h|v)

[
log

p(h,v)

q(h|v)

]
+ KL(q(h|v)||p(h|v))

Denote the first term above as a function of p, q,v where H(.) denotes the Shannon entropy:

L(p, q,v) , Eq(h|v)

[
log

p(h,v)

q(h|v)

]
= Eq(h|v) [log p(h,v)] + H (q(h|v)) (18)

Let φ be a parameter in the inferential/recognition density q. The variational approach to ML esti-
mation involves gradient ascent on L for the entire collection of θ and φ simultaneously:

∂L(p, q,v)

∂θ
= Eq(h|v)

[
∂ log p(h,v)

∂θ

]
and

∂L(p, q,v)

∂φ
= −∂KLv(q||p)

∂φ
(19)

To justify the gradient wrt φ, note that log p(v) = L(p, q,v) + KLv(q||p) is independent of q.
Therefore, we can interpret Equations (19) as compensation for dropping the term ∂KLv(q||p)

∂θ in
Equation (17) for gradient ascent on log p(v) wrt θ, by instead doing gradient ascent for an expanded
variational collection that includes both θ and φ on L(p, q,v), by estimating the sensitivity of the
KL distance with respect to the sampling density q instead.
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