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Abstract— A stochastic control problem motivated by broad-
cast applications is considered in this paper. A natural queueing
model abstraction in which each service to a queue clears all
the customers at once is adopted, which can also be considered
as a batch processing queueing model with infinite batch size.
Each broadcast can be charged a non-negative cost. In addition,
there is a cost whose rate is given as a function of the number
of customers waiting in the system at any point. For any cost
rate which is a convex function in the number of customers,
it is shown that the optimal control is of the threshold type
in order to minimize the infinite horizon discounted cost. This
result complements the existing literature on batch processing
queueing models that have typically only considered monotone
costs. For a system with two classes of customers where each
service can clear all customers of any given class, with monotone
waiting costs and zero service costs, we show that the optimal
control can be represented as a double-switch curve in the two
dimensional state space. The structure of the optimal policy for
multiple queues is a natural next question, and an interesting
future direction is to explore the performance of simple index
policies.

I. THE MODEL

Consider a system with a dynamic audience interested
in a common broadcast from a central server. This can
be modeled as a queuing system in continuous time with
customers (the audience) arriving according to a Poisson
process of intensity λ. The server has the ability to service
the audience with broadcasts separated by an exponentially
distributed random duration, whose maximum rate is µ (and
can be controlled to any value between 0 and µ). Whenever a
broadcast is made, the entire audience present in the system
at that instance is served (i.e., the total number of customers
is reduced to 0 at that instance). There are non-negative
costs associated with each broadcast, and also for holding
customers in the system, which is specified by a cost rate
function that depends on the number of customers in the
system at any given time. This cost rate function could be for
instance, linear, or more generally even convex in the number
of customers waiting. Our aim is to minimize the infinite
horizon discounted cost, and to understand the structure of
the associated optimal policies.

A more general problem is to consider multiple classes
of customers (each belonging to a separate queue) where
the server has to also decide which class to serve for each
broadcast. In this case, even if there is no cost associated
with each service, and the cost rate as a function of the
customer state is monotone, the server has to be operated at
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the maximum rate µ, as in the single queue case. However,
we are still left with a scheduling problem of deciding which
queue to serve in this situation. A few motivating scenarios
for the general broadcast queueing model (i.e., each service
clears the entire queue) and the cost models we consider are
appropriate before we proceed further:

Broadcast Scheduling: The general broadcast
scheduling problem arises in applications where a central
server has multiple pages with customer requests for each
page arriving independently. Each service can satisfy all
outstanding requests for any single page. The aim is usually
to minimize either the average waiting time for the page
requests, or to minimize the maximum waiting time. A
large body of work in the database and algorithms literature
has focused on scheduling for the broadcasting model (eg:
[16], [5], [12], [4], [11], [7]). A strong emphasis is on
competitive analysis, in which oblivious online policies and
optimal offline algorithms that have a precise knowledge of
the future sample path of the customer arrivals are analyzed.
To put the stochastic control model in perspective with this
alternate line of investigation, one could view this as a middle
ground between the omniscient offline algorithm and the
completely oblivious online algorithm, since the assumption
of Poisson arrivals amounts to a partial knowledge on the
sample paths of customer arrivals. In this context, [19]
studies the batch processing problem in multiple queues.
A variant with constant service time was studied also in
[14]. In this paper, we also consider scheduling a broadcast
server with two queues with monotone costs in section IV
and conclude that a switching structure is optimal.

Wireless Personal Area Networks: Consider wire-
less hosts in close proximity of each other with high indi-
vidual link rates. Interference constraints imply that only one
link can be active at a time. Because of the high data rate
for each individual links, essentially all outstanding packets
are cleared whenever a link is activated, and the scheduling
problem needs to resolve which link to activate at any given
time. Among the myriad applications that wireless networks
have found, one challenging and emerging scenario is the
wireless personal area network (WPAN) ([1]), which closely
fits the wireless model described. A typical WPAN consists
of hosts distributed in a very short range that communicate
via mutually interfering wireless links, because of which
scheduling them optimally becomes a challenging issue.

Motivation for Non Monotone Cost: The reasons
motivated in [10] could also be argued for the current model.
A non monotone cost model could have utility in flow control
problems and also as a technique to understand a multiple
queue system of monotone costs by considering a related



single queue model with non monotone costs. Further, a
non monotone cost is also relevant to a situation where the
server has a strategic interest in not keeping the audience
interested in its broadcast as low as possible at all times.
Such a possibility is easy to imagine, for instance, in a peer
to peer service model with selfish peers, where having too
few interested peers on average incurs a high cost for the
server because the server is itself predominantly only served
by other selfish peers that are actively interested in its own
service. On the other hand, keeping too many peers waiting
also incurs a progressively higher cost beyond a certain point,
because the server then risks being classified as a free loader
by its peers, leading to punishment from its frustrated peers
in the form of degraded service to itself.

Queueing systems have been studied under the closely
related “batch processing” model. In the batch processing
model corresponding to a batch size of B, each service to the
queue can clear a maximum of B customers. For broadcast,
B = ∞. Serfozo and Deb, in [9] considered the stochastic
control problem of a single queue under batch processing,
and proved that the optimal control is of threshold type
when the instantaneous cost function is monotone in the
number of customers. There is extensive literature on the
batch processing model for a single queue ([2], [3], [8], [17],
[18]), however, a common theme in all previous work is
that the cost rate is generally monotone in the number of
customers. On a related note, [10] proved that a threshold
control is optimal for the standard queueing service model
(i.e. each service clears one customer) with convex cost rate
in the number of customers, and without any service cost.
While portions of our proof borrow heavily on techniques
from [10], the overall argument is based on a novel use of
the standard technique of policy iteration.

II. NOTATION AND PRELIMINARIES

We will first consider a single queue. Assume that arrivals
to the queue are defined by a Poisson process of rate λ.
Whenever the queue is served, all customers in the queue exit
at once. Without loss of generality, assume that λ+ µ = 1.
Let c : Z+ 7→ R+ denote a non-negative cost rate defined as
a function of the number of customers in the queue, which
we denote as xt at time t. We assume that c is convex
and also has an appropriate growth restriction to ensure
that the infinite horizon discounted cost is well defined. Let
csw denote the constant service cost associated with each
broadcast. Assume that for a given time a control value,
0 ≤ w ≤ 1, specifies the (exponential) rate of the broadcast
as being wµ. A useful way of interpreting this situation is
to look at the rate µ process consistently at all times, and
then actually utilizing this potential broadcast opportunity
with probability w when the control being applied is w, an
equivalence which follows directly from the Poisson splitting
property.

Now consider a rate 1 Poisson process obtained by adding
the arrival process of rate λ and the potential departure
process of rate µ. Let τn be the nth transition of this net
process and let xn denote xτn for simplicity. The discrete

time jump Markov process obtained by sampling the sys-
tem between these transitions has the following transition
probabilities defined on Z+ (this discrete time process is
independent of the inter-event times): p(y/x) = λI{y =
x + 1} + µ(w(x)I{y = 0} + (1 − w(x))I{y = x}, where
w denotes the stationary, feedback control as a function of
the current state. The infinite horizon discounted cost to be
minimized is:

Ewx

∫ ∞
0

e−αtc(xt) dt+
∞∑
k=1

e−ατkχ{xk−1 6= 0 and xk = 0}csw

where Ewx denotes the expectation with the control w
starting at x0 = x, α is the discount factor and χ denotes the
indicator function for the conditions given in its argument,
and csw is the non negative service cost associated with
each broadcast. The above expression can be shown to be
a constant factor of the equivalent cost on the discrete time
process by invoking the independence between the inter-
event times and the jump process dynamics ([13]). This gives
us an equivalent optimization on the discrete time Markov
decision process defined above with the following objective
function:

Ewx

∞∑
k=0

βk (c(xk) + csχ{xk−1 6= 0, xk = 0})

where 0 < β < 1 is the discount factor and cs (rather
than csw) is the service cost for the equivalent discrete time
problem. We shall also use a convention that x−1 = 0. Let w
be a [0, 1] valued function on Z+ denoting the control (i.e.,
w(x)µ is the rate of the broadcast server with x customers in
the queue). Let Uw denote the value function corresponding
to the control w:

Uw(x) = Ewx

∞∑
k=0

βk (c(xk) + csχ{xk−1 6= 0, xk = 0})

(1)
By a simple recursion argument, it can be shown that this

value function satisfies a fixed point equation corresponding
to the dynamic programming operator for Uw, given by

T wf(x) = c(x) + β(λf(x+ 1)+
µ(w(x)(f(0) + cs) + (1− w(x))f(x)))

In other words,

Uw = T wUw (2)

Further, uniqueness of a solution to the above equation is
implied by fixed point theorem for contractions in complete
metric spaces, provided we assume the appropriate growth
restrictions on c(x) as in [10], [13] (this is not restrictive,
unless we need to model a situation with super exponential
costs). Let V (x) be the optimal value function, defined as
the infimum over arbitrary control policies u, of the expected



infinite horizon discounted cost starting at x :

V (x) = inf
u
Eux

∞∑
k=0

βk(c(xk) + csχ{xk−1 6= 0, xk = 0})

(3)
The fixed point equation operator for V is:

T f(x) = c(x)+β{λf(x+1)+µmin(f(x), f(0)+cs)} (4)

V is the unique solution to:

V = T V (5)

Given the optimal V , an optimal control w would then be:

w(x) =

{
1 if V (x) > V (0) + cs

0 if V (x) ≤ V (0) + cs

A key result we prove in this paper is the following:

Theorem 2.1: The optimal control is given by the station-
ary state feedback control w(x) = I{x ≥ l∗} for a critical
threshold l∗. Further,

l∗ = min{l : Ul(l) > Ul(0) + cs}

III. PROOF OF THRESHOLD OPTIMALITY

To denote w of the form w(x) = I{x ≥ l}, we will from
now on write it as wl and the value function corresponding
to it as Ul. It suffices to show that equation (5) is satisfied for
the operator Tw corresponding to w defined by a threshold
control in order to show that it is an optimal control. First,
we recall the definition of a quasiconvex (unimin) function:

Definition 3.1: A function f on Z+ is quasiconvex
(unimin) if f(x + 1) − f(x) ≥ 0 for all x > y whenever
f(y + 1)− f(y) > 0

A key element of the argument is to show that:
Theorem 3.2: If Ul(l − 1) ≤ Ul(0) + cs < Ul(l), then Ul

is quasiconvex.
Proof: Implied by Lemmas 3.3, 3.5 and the hypothesis

that Ul(l − 1) < Ul(l)

Lemma 3.3: If Ul(l− 1) ≤ Ul(l), then Ul(x) is quasicon-
vex on 0 ≤ x ≤ l − 1.

Proof: Within this Lemma, we will drop the subscript
l and have the convention that U means Ul, and denote
βλ

1−βµ = γ (note that 0 < γ < 1). Further, we denote
c′(x) = c(x)/(1 − βµ). For 0 ≤ x ≤ l − 1, U(x) =
c(x) + βλU(x+ 1) + βµU(x), which in turn implies:

U(x) = c′(x) + γU(x+ 1)
=c′(x) + γ{c′(x+ 1) + γU(x+ 2)}
. . .

=c′(x) + γc′(x+ 1) + γ2c′(x+ 2) + . . .

. . .+ γl−x−1c′(l − 1) + γl−xU(l)

Let δ′(x) , c′(x+ 1)− c′(x). δ′ is increasing since c′ is
convex. Also define

∆U(x) , U(x+ 1)− U(x)

Using the above definition, and from the fact that

U(l − 1) = c′(l − 1) + γU(l)

, one can verify the following relation for 0 ≤ x ≤ l − 2:

∆U(x) =δ′(x) + γδ′(x+ 1) + . . .

. . .+ γl−x−2δ′(l − 2) + γl−x−1(U(l)− U(l − 1))

A sufficient condition for U(x) to be quasiconvex on 0 ≤
x ≤ l − 1 is the existence of a ξ(x) > 0 such that ∆U(x)

ξ(x) is
increasing1 for 0 ≤ x ≤ l − 2. We will now show this for
the choice of ξ(x) = 1 − γl−x−1 > 0 for 0 ≤ x ≤ l − 2.
Since ∆U(x)

ξ(x) depends on the function δ′ in a linear fashion,

we just need to verify that ∆U(x)
ξ(x) is increasing when δ′ is

a constant, and when it is of the form I{x ≥ b}. First if
δ′(x) = a for any constant a, we have:

∆U(x)
ξ(x)

= a
1 + γ + . . .+ γl−x−2

1− γl−x−1
+

γl−x−1

1− γl−x−1
(U(l)− U(l − 1))

=
a

1− γ
+

γl−1

γx − γl−1
(U(l)− U(l − 1))

, which is increasing in x since (1) γ < 1 and (2) U(l) >
U(l− 1), by the hypothesis of the Lemma. Next let δ′(x) =
I{x ≥ b}. We then have (with the convention that if b > l−2,
the appropriate terms below will be 0, and hence increasing
by default):

∆U(x)
ξ(x)

=

γb−x + . . .+ γl−x−2

1− γl−x−1
+

γl−x−1

1− γl−x−1
(U(l)− U(l − 1))

=
γb + . . .+ γl−2

γx − γl−1
+

γl−1

γx − γl−1
(U(l)− U(l − 1))

, which is again increasing with x by the hypothesis of the
Lemma.

Lemma 3.4: Ul(x) is quasiconvex for x ≥ l.
Proof: This can be proved by considering a coupled

process and using an argument similar to [10]. The complete
proof is given in the appendix.

Lemma 3.5: If Ul(l−1) ≤ Ul(0)+cs < Ul(l), then Ul(x)
is increasing on x ≥ l

Proof: We already know that Ul is quasiconvex for
l ≤ x from Lemma 3.4. Hence, it is sufficient to show that
Ul(l + 1) > Ul(l) to prove that it is increasing on x ≥

1Throughout this paper, ‘increasing’ and ‘decreasing’ mean ‘non-
decreasing’ and ‘non-increasing’ respectively.



l. For the rest of the proof in this Lemma, we will again
implicitly drop the subscript l in Ul. Assume to the contrary
that U(l + 1) ≤ U(l). Then:

U(l)
= c(l) + β{λU(l + 1) + µ(U(0) + cs)}
≤ c(l) + βU(l) (∵ U(0) + cs < U(l), U(l + 1) ≤ U(l))

and,

U(l − 1)
= c(l − 1) + β{λU(l) + µU(l − 1)}
≥ c(l − 1) + βU(l − 1) (∵ U(l) > U(l − 1))

The above two inequalities imply:

∆U(l − 1) ≤ δ(l − 1) + β∆U(l − 1)
⇒ 0 < (1− β)∆U(l − 1) ≤ δ(l − 1)

Since δ is increasing, this also means that δ(l) > 0. Then,
again by a certain coupling argument similar to Lemma 3.4,
we have U(l + 1) > U(l). More precisely, consider the
coupled process of the proof of Lemma 3.4. For x0 = l
and τ , the stopping time as defined in proof of Lemma 3.4,
xk is an increasing sequence for 0 ≤ k ≤ τ − 1. Hence,
δ(xk) ≥ δ(l) > 0 for 0 ≤ k ≤ τ − 1. Thus, using equation
(13), ∆U(l) = Ex0=l

∑τ−1
k=0 β

kδ(xk) > 0, which in turn
implies that Ul(x) is increasing on x ≥ l.

Lemma 3.6: If c(x) is convex, unless it is decreasing on
all x, we have for some l large enough: Ul(l) > Ul(0) + cs.

Proof: Suppose Ui(i) ≤ Ui(0) + cs for all i < l. For
any i < l, consider a Markov decision problem where the
only decision variable is at state x = i, with the rest of the
control fixed to match the threshold i+1 control, wi+1. Now
apply Policy iteration to the threshold i policy on the above
MDP. Since Ui(i) ≤ Ui(0) + cs, an optimal control is to set
w(i) = 0 (i.e. don’t serve at x = i), and policy iteration
results in wi+1, the threshold-i + 1 control. Hence, Ui+1 is
componentwise less than Ui. Specifically, this means Ui(0)
is a decreasing sequence for i ≤ l, implying that Ul(0) ≤
U1(0). Since c is not decreasing and is convex, for some
l large enough, we have c(l) > U1(0) + cs. For such an
l, if we also have Ui(i) ≤ Ui(0) + cs for all i < l, then
Ul(l) = c(l) + β{λUl(l + 1) + µ(Ul(0) + cs)} > c(l) ≥
U1(0) + cs ≥ Ul(0) + cs.

Theorem 3.7: The optimal control is a threshold policy
corresponding to the threshold l∗ given by

l∗ = min{l : Ul(l) > Ul(0) + cs} (6)

Proof: Suppose l∗ is infinite. Then, the contrapositive
of Lemma 3.6 implies that c(x) is decreasing, in which case
it is clear that an optimal policy is to never serve, which
corresponds to a threshold l∗ = ∞ optimal control. Thus,

we now only need to argue about the case where l∗ is finite.
Now suppose

Ul∗(l∗ − 1) > Ul∗(0) + cs (7)

Then consider the Markov decision subproblem where the
the control is fixed to match the threshold l∗ control for
all x except for x = l∗ − 1, which is the only decision
variable. Then, by an application of policy iteration for this
subproblem, we conclude that Ul∗−1 strictly improves Ul∗ .
Now if the following is true:

Ul∗−1(l∗ − 1) ≤ Ul∗−1(0) + cs (8)

, then we can again consider the Markov decision subproblem
where the only decision variable is at x = l∗ − 1 and
everything else is fixed to match the threshold l∗ control.
Such consideration implies that Ul∗ improves Ul∗−1, a con-
tradiction to what we just concluded above. Hence equation
(8) must be false and

Ul∗−1(l∗ − 1) > Ul∗−1(0) + cs

which contradicts the definition of l∗ in equation (6). Hence,
the assumption in equation (7) is false and we conclude that:

Ul∗(l∗ − 1) ≤ Ul∗(0) + cs

This means that l∗ satisfies the hypothesis for Theorem 3.2
and hence is quasiconvex. This implies:

Ul∗(x)

{
≤ Ul∗(0) + cs if x ≤ l∗ − 1
> Ul∗(0) + cs if x ≥ l∗

Therefore, it also satisfies the fixed point equation corre-
sponding to the optimal value function dynamic program-
ming operator given in equation (4).

IV. SCHEDULING TWO QUEUES

In this section we shall consider the case of two queues.
Unlike the single queue case for which we were able to tackle
the convex cost model (and the monotone cost model was
handled in [9]), we will only consider a monotone cost in the
number of waiting customers for two queues. More explicitly,
there are two classes of customers who arrive according to
independent Poisson processes of rates λ1 and λ2. We also
have a broadcasting server of rate µ. Assume without loss
of generality that λ1 + λ2 + µ = 1. The is no service cost.
Let the cost rate be given as c(x1, x2) when the number
of customers in queues 1 and 2 is x1, x2 respectively. We
shall assume that c is non decreasing in (x1, x2). Again,
although a continuous time system, the time integrals of
the instantaneous cost (both discounted as well as long run
average) can be conveniently cast in terms of the discrete
time jump processes because of the independence of inter-
event times with respect to the states (which comes from
the Poisson arrivals and service processes). Let β be the
equivalent discount factor for this discrete time problem. Let
c1 and c2 be the equivalent service costs for queue 1 and 2
respectively for the equivalent discrete time problem. The n
step cost function starting at state (x1(0), x2(0)) is (where



u denotes control and the evolution of the state is implicitly
as per control u):
Vn(x1, x2) = infuEu(x1(0),x2(0))

∑n−1
k=0 β

kc(x1(k), x2(k))
Via dynamic programming, we can recursively characterize
Vn as: V0 ≡ 0, and:

Vn+1(x1, x2) = c(x1, x2)+ (9)
β{λ1Vn(x1 + 1, x2) + λ2Vn(x1, x2 + 1)+

µmin(Vn(x1, 0), Vn(0, x2))}

The optimal control action with n steps to go at state (x1, x2)
is given by:

un(x1, x2) =

{
2 , if Vn(x1, 0) ≤ Vn(0, x2)
1 , otherwise.

(10)

In the above description, the control variable un(x1, x2)
denotes the queue to be served at state (x1, x2).

Remark 1: By letting n → ∞ it can be argued that
V∞ exists and Vn converges to it, and V∞ also inherits
the properties of Vn that are shown below via induction,
including the switching structure, because the set of functions
satisfying them is closed under point-wise limits.

Let (x1, x2) ≺ (y1, y2)⇔ x1 ≤ x2 and y1 ≤ y2

Lemma 4.1: For any x ∈ Z2
+, y ∈ Z2

+ such that x ≺ y,
Vn(x) ≤ Vn(y).

Proof: Let x = (x1, x2), y = (y1, y2) be such that
x ≺ y. The assertion holds for n = 0 from the monotonicity
of c. We also have:

Vn+1(y)− Vn+1(x) = c(y1, y2)− c(x1, x2)
+ βλ1(Vn(y1 + 1, y2)− Vn(x1 + 1, x2))
+ βλ2(Vn(y1, y2 + 1)− Vn(x1, x2 + 1))
+ βµ(min(V1(y1, 0), Vn(0, y2))−min(Vn(x1, 0), Vn(0, x2)))}

If x ≺ y, we also have (x1 + 1, x2) ≺ (y1 + 1, y2), (x1, 0) ≺
(y1, 0), etc. If the assertion holds for n, one can easily check
that that this implies that each of the above terms is non-
negative. Therefore, it also holds for n+ 1.

Theorem 4.2: The optimal control with n steps to go is
given by a switch curve:

un(x1, x2) =

{
2 , if x2 ≥ sn(x1)
1 , otherwise.

(11)

where

sn(x) = min{y : Vn(x, 0) ≤ Vn(0, y)} (12)
Proof: Follows from interpreting equation (10) using

Lemma 4.1.

V. CONCLUSION AND FURTHER WORK

The broadcast service queueing model which corresponds
to batch processing with a batch size infinity was considered.
For a single queue, we have seen that a threshold control
is optimal not only for monotone, but also for convex cost
function and with constant service costs. For two queues
with a monotone cost rate, we see that the optimal control

Fig. 1. An Illustration of the State space for 2 queues and the optimal
control that is proved in theorem 4.2

can be described by a switch curve. A natural question is
whether the optimal policy has a simple structure for n > 2
queues. For simple algorithms, one might want to restrict
attention to index rules for scheduling. By an index rule,
we mean a policy which can be computed by comparing
scores for each queue independently. Formally, at a state
(x1, . . . , xn), we would like to be able to describe the policy
as u(x1, . . . , xn) = arg maxi∈[n]{ψi(xi)} where ψi’s are
some functions describing the policy 2. Yet another useful
line of pursuit might be to obtain suboptimal, yet provably
useful index rules for asymptotically large number of queues.
For instance, the popular longest wait first algorithm (LWF)
([6], [5]) in the deterministic setting is approximately equiv-
alent to using an index policy corresponding to scores of
xi√
λi

in the stochastic setting after some simple calculations.
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VII. APPENDIX

Proof: [Complete Proof of Lemma 3.4] Given an inte-
ger l, define a Markov process on Z2

+ with the following
transitions:

p((x′, y′)|(x, y)) = λI{x′ = x+ 1, y′ = y + 1}+
µI{x′ = x(1− I{x ≥ l}), y′ = y(1− I{y ≥ l})}

Then, corresponding to any initial state (x, y) the above
coupled process has marginals which are identical to the
individual processes. Although the condition (3) of [10]
doesn’t hold anymore, restrict attention to any x ≥ l and
consider the process started in (x, x + 1). Then, yk − xk
takes values in 0, 1 and is decreasing in k. Let Ex denote
the expectation under this starting condition. Let

τ = min{k ≥ 0 : xk = yk}

As in [10], let:

r(x) =
U(x+ 1)− U(x)
Ex

∑τ−1
k=0 β

k

2It is well known that optimal policies can be described by index rules
for multi armed bandit problems ([15])



On x ≥ l, it can be shown that r is increasing, which implies
U is quasiconvex on the same domain. For x ≥ l:

U(x+1)−U(x) = Ex

∞∑
k=0

βk(c(yk)−c(xk)) = Ex

τ−1∑
k=0

βkδ(xk)

(13)
so that:

r(x) =
Ex

∑τ−1
k=0 β

kδ(xk)

Ex
∑τ−1
k=0 β

k

Since δ is increasing and since r depends linearly on δ it
suffices to verify that it is increasing for constants and for
functions of the form I{x ≥ b}. Since r is a constant if δ is
a constant or if δ(x) = I{x ≥ b} where b ≤ x since x ≥ l,
we only have to check for I{x ≥ b} where b > x. Let

σ = τ ∧min{k : xk = x+ 1}

Then r(x) can be compared favorably with r(x + 1) by
writing (using b > x):

Ex

τ−1∑
k=0

I{xk ≥ b}βk = Ex[βσI{σ < τ}]Ex+1

τ−1∑
k=0

I{x ≥ b}βk

and

Ex

τ−1∑
k=0

βk = Ex

σ−1∑
k=0

βk + Ex[βσI{σ < τ}]Ex+1

τ−1∑
k=0

βk
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