Relaying a Fountain Code

Ramakrishna Gummadi and RS Sreenivas

Coordination Science Lab
Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign

IT School, PSU

06/03/08
Fountain Codes

Each client collects enough packets to decode

Coding doesn’t depend on the erasure probabilities - Rateless!

Most popular examples: LT, Raptor.
Luby Codes

- Average degree - $O(\log k) \Rightarrow \text{Logarithmic Per Symbol Complexity}$
- $k + O(\sqrt{k} \log^2 k)$ coded packets sufficient $\Rightarrow \text{Rate Optimal and very low overhead}$
- Decoding - Iterative BP decoding
Multiple hops

- Simply Forwarding - lose mincut capacity
- Decode and Reencode - Delay
- Random Linear Codes - $O(k)$ Complexity
- Chunked Codes [Harvey et. al. 2006] - $O(\log^2 k)$ complexity
- Trade off Schemes for Line networks [Pakzad et. al. 2005]
- Can we achieve the optimality of single hop?
Multiple hops

- Simply Forwarding - lose mincut capacity
- Decode and Reencode - Delay
- Random Linear Codes - $O(k)$ Complexity
- Chunked Codes [Harvey et. al. 2006] - $O(\log^2 k)$ complexity
- Trade off Schemes for Line networks [Pakzad et. al. 2005]
- Can we achieve the optimality of single hop?
Multiple hops

- Simply Forwarding - lose mincut capacity
- Decode and Reencode - Delay
- Random Linear Codes - $O(k)$ Complexity
- Chunked Codes [Harvey et. al. 2006] - $O(\log^2 k)$ complexity
- Trade off Schemes for Line networks [Pakzad et. al. 2005]
- Can we achieve the optimality of single hop?
Multiple hops

- Simply Forwarding - lose mincut capacity
- Decode and Reencode - Delay
- Random Linear Codes - $O(k)$ Complexity
- Chunked Codes [Harvey et. al. 2006] - $O(\log^2 k)$ complexity
- Trade off Schemes for Line networks [Pakzad et. al. 2005]
- Can we achieve the optimality of single hop?
Multiple hops

- Simply Forwarding - lose mincut capacity
- Decode and Reencode - Delay
- Random Linear Codes - $O(k)$ Complexity
- Chunked Codes [Harvey et. al. 2006] - $O(\log^2 k)$ complexity
- Trade off Schemes for Line networks [Pakzad et. al. 2005]
- Can we achieve the optimality of single hop?
Multiple hops

- Simply Forwarding - lose mincut capacity
- Decode and Reencode - Delay
- Random Linear Codes - $O(k)$ Complexity
- Chunked Codes [Harvey et al. 2006] - $O(\log^2 k)$ complexity
- Trade off Schemes for Line networks [Pakzad et al. 2005]
- Can we achieve the optimality of single hop?
Multiple hops

- Simply Forwarding - lose mincut capacity
- Decode and Reencode - Delay
- Random Linear Codes - $O(k)$ Complexity
- Chunked Codes [Harvey et. al. 2006] - $O(\log^2 k)$ complexity
- Trade off Schemes for Line networks [Pakzad et. al. 2005]
- Can we achieve the optimality of single hop?
Goals

• No Delay because of Decode and Re-encode
• Rateless
• Throughput rate to any node = Its min cut capacity from the source
• Complexity and Overhead similar to LT codes at all nodes
Goals

- No Delay because of Decode and Re-encode
- Rateless
 - Throughput rate to any node = Its min cut capacity from the source
 - Complexity and Overhead similar to LT codes at all nodes
Goals

- No Delay because of Decode and Re-encode
- Rateless
- Throughput rate to any node = Its min cut capacity from the source
- Complexity and Overhead similar to LT codes at all nodes
Goals

- No Delay because of Decode and Re-encode
- Rateless
- Throughput rate to any node = Its min cut capacity from the source
- Complexity and Overhead similar to LT codes at all nodes
Assumptions

- Tree Network
- Discrete Memoryless Erasure Channels
- Universal Upper bound on Erasure probabilities
Challenges

- Online Encoding
 - Intermediate Nodes can only access packets sequentially as received.

- Re-encoding the Coded packets
 - Intermediate nodes should be able to re-encode the coded packets without waiting to decode.
Challenges

- Online Encoding
 - Intermediate Nodes can only access packets sequentially as received.

- Re-encoding the Coded packets
 - Intermediate nodes should be able to re-encode the coded packets without waiting to decode.
A toy problem

\(i^{th}\) coded packet has to be a combination of the first \(i\) packets alone

- Generate a random set of \(k + o(k)\) symbols according to the LT encoding process.
- Run a mock decoder. Let \(\pi\) be the sequence in which we see decoded packets.
- Decodability \(\Rightarrow\) the coded packet used in the \(i^{th}\) step of decoding was a combination involving only the first \(i\) decoded packets.
- Do actual encoding *online* by assigning packet indices in the sequence defined by \(\pi\)!
A toy problem

\(i^{th}\) coded packet has to be a combination of the first \(i\) packets alone

- Generate a random set of \(k + o(k)\) symbols according to the LT encoding process.
- Run a mock decoder. Let \(\pi\) be the sequence in which we see decoded packets.
- Decodability \(\Rightarrow\) the coded packet used in the \(i^{th}\) step of decoding was a combination involving only the first \(i\) decoded packets.
- Do actual encoding \textit{online} by assigning packet indices in the sequence defined by \(\pi\)!
A toy problem

\(i^{th}\) coded packet has to be a combination of the first \(i\) packets alone

- Generate a random set of \(k + o(k)\) symbols according to the LT encoding process.
- Run a mock decoder. Let \(\pi\) be the sequence in which we see decoded packets.
- Decodability \(\Rightarrow\) the coded packet used in the \(i^{th}\) step of decoding was a combination involving only the first \(i\) decoded packets.
- Do actual encoding \textit{online} by assigning packet indices in the sequence defined by \(\pi\)!
A toy problem

\(i^{th} \) coded packet has to be a combination of the first \(i \) packets alone

- Generate a random set of \(k + o(k) \) symbols according to the LT encoding process.
- Run a mock decoder. Let \(\pi \) be the sequence in which we see decoded packets.
- Decodability \(\Rightarrow \) the coded packet used in the \(i^{th} \) step of decoding was a combination involving only the first \(i \) decoded packets.
- Do actual encoding online by assigning packet indices in the sequence defined by \(\pi \)!
A toy problem

The i^{th} coded packet has to be a combination of the first i packets alone

- Generate a random set of $k + o(k)$ symbols according to the LT encoding process.
- Run a mock decoder. Let π be the sequence in which we see decoded packets.
- Decodability \Rightarrow the coded packet used in the i^{th} step of decoding was a combination involving only the first i decoded packets.
- Do actual encoding *online* by assigning packet indices in the sequence defined by π!
Re-encoding coded packets

• Do concatenated coding - slap on successive layers of the same code at each hop
• Fix a sequence of block lengths, $k = k_0 \ldots k_n$ along the hops.
 • subject to: k_i coded packets at node i is enough to recover the k_{i-1} packets that were recoded by node $i - 1$ w.h.p

 \[k_i \leq k_0 (1 + \frac{\log^2 k_n}{\sqrt{k_i}}) \]
• Overhead doesn’t accumulate over hops, since $k_n = O(k_0)$ if we set $k_0 = \Omega(n^3)$.
• Complexity of encoding \sim LT coding on a block length k_i
• Decoding - i instances of LT decoding.
Re-encoding coded packets

- Do concatenated coding - slap on successive layers of the same code at each hop
- Fix a sequence of block lengths, $k = k_0 \ldots k_n$ along the hops.
 - subject to: k_i coded packets at node i is enough to recover the k_{i-1} packets that were recoded by node $i-1$ w.h.p
 - $k_i \leq k_0 (1 + \frac{\log^2 kn}{\delta \sqrt{k}})^i$
- Overhead doesn’t accumulate over hops, since $k_n = O(k_0)$ if we set $k_0 = \Omega(n^3)$.
- Complexity of encoding \sim LT coding on a block length k_i
- Decoding - i instances of LT decoding.
Re-encoding coded packets

- Do concatenated coding - slap on successive layers of the same code at each hop
- Fix a sequence of block lengths, $k = k_0 \ldots k_n$ along the hops.
 - subject to: k_i coded packets at node i is enough to recover the k_{i-1} packets that were recoded by node $i - 1$ w.h.p
 - $k_i \leq k_0 (1 + \frac{\log^2 \frac{kn}{\delta}}{\sqrt{k}})^i$
- Overhead doesn’t accumulate over hops, since $k_n = O(k_0)$ if we set $k_0 = \Omega(n^3)$.
- Complexity of encoding \sim LT coding on a block length k_i
- Decoding - i instances of LT decoding.
Re-encoding coded packets

- Do concatenated coding - slap on successive layers of the same code at each hop
- Fix a sequence of block lengths, $k = k_0 \ldots k_n$ along the hops.
 - subject to: k_i coded packets at node i is enough to recover the k_{i-1} packets that were recoded by node $i-1$ w.h.p
- $k_i \leq k_0 \left(1 + \frac{\log_2 \frac{k n}{\delta}}{\sqrt{k}}\right)^i$
- Overhead doesn't accumulate over hops, since $k_n = O(k_0)$ if we set $k_0 = \Omega(n^3)$.
 - Complexity of encoding \sim LT coding on a block length k_i
 - Decoding - i instances of LT decoding.
Re-encoding coded packets

- Do concatenated coding - slap on successive layers of the same code at each hop
- Fix a sequence of block lengths, $k = k_0 \ldots k_n$ along the hops.
 - subject to: k_i coded packets at node i is enough to recover the k_{i-1} packets that were recoded by node $i-1$ w.h.p
- $k_i \leq k_0 \left(1 + \frac{\log^2 \frac{kn}{\delta}}{\sqrt{k}}\right)^i$
- Overhead doesn’t accumulate over hops, since $k_n = O(k_0)$ if we set $k_0 = \Omega(n^3)$.
- Complexity of encoding \sim LT coding on a block length k_i
- Decoding - i instances of LT decoding.
Re-encoding coded packets

- Do concatenated coding - slap on successive layers of the same code at each hop
- Fix a sequence of block lengths, $k = k_0 \ldots k_n$ along the hops.
 - subject to: k_i coded packets at node i is enough to recover the k_{i-1} packets that were recoded by node $i-1$ w.h.p
 - $k_i \leq k_0 (1 + \frac{\log^2 k_n}{\sqrt{k}})^i$
- Overhead doesn’t accumulate over hops, since $k_n = O(k_0)$ if we set $k_0 = \Omega(n^3)$.
- Complexity of encoding \sim LT coding on a block length k_i
- Decoding - i instances of LT decoding.
Terminology

- **Definition**

 An **Online Code Copy** is an ordered sequence of k_{i+1} code symbols that can be generated in an "online fashion".

- **Definition**

 A **Code Matrix** is a $T(k) \times k_{i+1}$ random matrix of Code Symbols in which each row is an independent Online Code Copy.

- **Definition**

 The **Online phase** at node i is defined to be the period until the time slot at which node i collects a total of k_{i+1} coded packets.

- **Definition**

 State is the number of packets successfully collected so far.
Terminology

• Definition

An **Online Code Copy** is an ordered sequence of \(k_{i+1} \) code symbols that can be generated in an “online fashion”.

• Definition

A **Code Matrix** is a \(T(k) \times k_{i+1} \) random matrix of Code Symbols in which each row is an independent Online Code Copy.

• Definition

The **Online phase** at node \(i \) is defined to be the period until the time slot at which node \(i \) collects a total of \(k_{i+1} \) coded packets.

• Definition

State is the number of packets successfully collected so far.
Terminology

- **Definition**

 An **Online Code Copy** is an ordered sequence of k_{i+1} code symbols that can be generated in an “online fashion”.

- **Definition**

 A **Code Matrix** is a $T(k) \times k_{i+1}$ random matrix of **Code Symbols** in which each row is an independent **Online Code Copy**.

- **Definition**

 The **Online phase** at node i is defined to be the period until the time slot at which node i collects a total of k_{i+1} coded packets.

- **Definition**

 State is the number of packets successfully collected so far.
Terminology

- **Definition**

 An **Online Code Copy** is an ordered sequence of \(k_{i+1} \) code symbols that can be generated in an "online fashion".

- **Definition**

 A **Code Matrix** is a \(T(k) \times k_{i+1} \) random matrix of **Code Symbols** in which each row is an independent **Online Code Copy**.

- **Definition**

 The **Online phase** at node \(i \) is defined to be the period until the time slot at which node \(i \) collects a total of \(k_{i+1} \) coded packets.

- **Definition**

 State is the number of packets successfully collected so far.
Terminology

- **Definition**

 An **Online Code Copy** is an ordered sequence of \(k_{i+1} \) **code symbols** that can be generated in an “online fashion”.

- **Definition**

 A **Code Matrix** is a \(T(k) \times k_{i+1} \) random matrix of **Code Symbols** in which each row is an independent **Online Code Copy**.

- **Definition**

 The **Online phase** at node \(i \) is defined to be the period until the time slot at which node \(i \) collects a total of \(k_{i+1} \) coded packets.

- **Definition**

 State is the number of packets successfully collected so far.
CodeMatrix

<table>
<thead>
<tr>
<th>Code copy</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C_{11}</td>
<td>C_{12}</td>
<td>C_{13}</td>
</tr>
<tr>
<td></td>
<td>C_{21}</td>
<td>C_{22}</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C_{31}</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C_{T1}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CODE BLOCK at node i

Dimensions: $T \times k_{i+1}$

Number of indices used to generate the symbols: k_i
Algorithm

Procedure $LT - RELAY$ (node i)

1. **First generate:**

 (i) A random code matrix, $M_i = [c_{ij}]_{1 \leq i \leq T, 1 \leq j \leq k_i + 1}$

 (ii) An independent random online code copy, $R_i = \{\theta_j\}_{1 \leq j \leq k_i + 1}$

2. **Online phase (i.e. while in state j, $0 \leq j \leq k_i + 1$):**

 (i) In the first time slot of state j, use code symbol θ_j for coding.

 (ii) Remaining Slots: Pick \hat{c} uniformly at random from the j^{th} column of M_i. If not previously picked, send a packet coded according to \hat{c}. Else, it becomes an *idle slot*.

3. Beyond the online phase, generate independent coded packets at each time slot using the standard LT coding procedure.

Theorem

(w.h.p.) N_i, Number of idle slots at node i satisfies $N_i \leq \log k$
Algorithm

Procedure \(LT - RELAY \) (node \(i \))

1. First generate:
 (i) A random code matrix, \(M_i = [c_{ij}]_{1 \leq i \leq T, 1 \leq j \leq k_{i+1}} \)
 (ii) An independent random online code copy, \(R_i = \{\theta_j\}_{1 \leq j \leq k_{i+1}} \)

2. Online phase (i.e. while in state \(j, 0 \leq j \leq k_{i+1} \)):
 (i) In the first time slot of state \(j \), use code symbol \(\theta_j \) for coding.
 (ii) Remaining Slots: Pick \(\hat{c} \) uniformly at random from the \(j^{th} \) column of \(M_i \). If not previously picked, send a packet coded according to \(\hat{c} \). Else, it becomes an idle slot.

3. Beyond the online phase, generate independent coded packets at each time slot using the standard LT coding procedure.

- Theorem

\((w.h.p.) N_i, \ Number of idle slots at node \ i \ satisfies \ N_i \leq \log k \)
Algorithm

Procedure $LT - RELAY$ (node i)

1. First generate:
 (i) A random code matrix, $M_i = [c_{ij}]_{1 \leq i \leq T, 1 \leq j \leq k_i + 1}$
 (ii) An independent random online code copy, $\mathcal{R}_i = \{\theta_j\}_{1 \leq j \leq k_i + 1}$

2. Online phase (i.e. while in state j, $0 \leq j \leq k_i + 1$):
 (i) In the first time slot of state j, use code symbol θ_j for coding.
 (ii) Remaining Slots: Pick \hat{c} uniformly at random from the j^{th} column of M_i. If not previously picked, send a packet coded according to \hat{c}. Else, it becomes an idle slot.

3. Beyond the online phase, generate independent coded packets at each time slot using the standard LT coding procedure.

• Theorem

$(w.h.p.)N_i$, Number of idle slots at node i satisfies $N_i \leq \log k$
Algorithm

Procedure $LT - RELAY$ (node i)

1. First generate:
 (i) A random code matrix, $\mathcal{M}_i = [c_{ij}]_{1 \leq i \leq T, 1 \leq j \leq k_{i+1}}$
 (ii) An independent random online code copy, $\mathcal{R}_i = \{\theta_j\}_{1 \leq j \leq k_{i+1}}$

2. **Online phase** (i.e. while in state j, $0 \leq j \leq k_{i+1}$):
 (i) In the first time slot of state j, use code symbol θ_j for coding.
 (ii) Remaining Slots: Pick \hat{c} uniformly at random from the j^{th} column of \mathcal{M}_i. If not previously picked, send a packet coded according to \hat{c}. Else, it becomes an *idle slot*.

3. Beyond the online phase, generate independent coded packets at each time slot using the standard LT coding procedure.

Theorem

(w.h.p.) N_i, Number of idle slots at node i satisfies $N_i \leq \log k$
Algorithm

Procedure $LT - RELAY$ (node i)

1. First generate:

 (i) A random code matrix, $\mathcal{M}_i = [c_{ij}]_{1 \leq i \leq T, 1 \leq j \leq k_{i+1}}$

 (ii) An independent random online code copy, $\mathcal{R}_i = \{\theta_j\}_{1 \leq j \leq k_{i+1}}$

2. Online phase (i.e. while in state j, $0 \leq j \leq k_{i+1}$):

 (i) In the first time slot of state j, use code symbol θ_j for coding.

 (ii) Remaining Slots: Pick \hat{c} uniformly at random from the j^{th} column of \mathcal{M}_i. If not previously picked, send a packet coded according to \hat{c}. Else, it becomes an idle slot.

3. Beyond the online phase, generate independent coded packets at each time slot using the standard LT coding procedure.

• Theorem

$(w.h.p.) N_i$, Number of idle slots at node i satisfies $N_i \leq \log k$
Uniformity in Code Symbol Selection

Theorem

Let $\chi = \{0, 1\}^{T(k) \times k}$ denote the ensemble of all possible realizations of the random matrix, Λ. For $\Psi = [\psi_{ij}] \in \chi$ and for any $S \subset \{1, \ldots, T(k)\} \times \{1, \ldots, k\}$, denote

$$W_S(\Psi) = \sum_{(i,j) \in S} \psi_{ij}$$

Take any $E \subset \{1, \ldots, T(k)\} \times \{1, \ldots, k\}$, with $|E| = r$, a constant represented as $E = \{e_1, \ldots, e_r\}$. For any $\phi = (\phi_1, \ldots, \phi_r) \in \{0, 1\}^r$ let $\Theta_\phi = \{\Psi \in \chi : \psi_{e_j} = \phi_j \text{ for } 1 \leq j \leq r\}$. Then, as $k \to \infty$, $P(\Theta_\phi)$ depends solely on $\sum_{i=0}^{r} \phi_i = W_E(\Psi) \forall \Psi \in \Theta_\phi$.
Theorem

Given that (i) the subset of code symbols from M_i used is uniformly random and (ii) t is past the online phase, the set of all coded packets generated till time slot t forms an LT code.

Proof.

Packets generated were the union of

1. R_i
2. An (almost) uniform random subset of code symbols from M_i
3. The independent LT coded packets generated past the online phase.
Min Cut Capacity

Theorem

Given that (i) the subset of code symbols from M_i used is uniformly random and (ii) t is past the online phase, the set of all coded packets generated till time slot t forms an LT code.

Proof.

Packets generated were the union of

1. R_i
2. An (almost) uniform random subset of code symbols from M_i
3. The independent LT coded packets generated past the online phase.
Min Cut Capacity

- **Theorem**

 Given that (i) the subset of code symbols from M_i used is uniformly random and (ii) t is past the online phase, the set of all coded packets generated till time slot t forms an LT code.

- **Proof.**

 Packets generated were the union of

 1. R_i
 2. An (almost) uniform random subset of code symbols from M_i
 3. The independent LT coded packets generated past the online phase.
Min Cut Capacity

Observation

\((w.h.p.)\) Assuming monotonically increasing erasure probabilities, the first \(k_i\) packets collected at node \(i\) can be decoded to recover the \((k_{i-1} - 1)\) packets that were recoded by node \(i - 1\).

Theorem

The code described is capacity achieving. That is, packets are transmitted from the source to the node \(i\) at a rate equal to
\[
\min_{1 \leq j \leq i} (1 - \epsilon_j).
\]
Min Cut Capacity

• **Observation**

(w.h.p.) Assuming monotonically increasing erasure probabilities, the first k_i packets collected at node i can be decoded to recover the k_{i-1} packets that were recoded by node $i - 1$.

• **Theorem**

The code described is capacity achieving. That is, packets are transmitted from the source to the node i at a rate equal to $\min_{1 \leq j \leq i} (1 - \epsilon_j)$.
Min Cut Capacity

- **Observation**

 \((w.h.p.)\) Assuming monotonically increasing erasure probabilities, the first \(k_i\) packets collected at node \(i\) can be decoded to recover the \(k_{i-1}\) packets that were recoded by node \(i-1\).

- **Theorem**

 The code described is capacity achieving. That is, packets are transmitted from the source to the node \(i\) at a rate equal to:
 \[
 \min_{1 \leq j \leq i} (1 - \epsilon_j).
 \]
Min Cut Capacity

- **Observation**

 \((\text{w.h.p.}) \) Assuming monotonically increasing erasure probabilities, the first \(k_i \) packets collected at node \(i \) can be decoded to recover the \(k_{i-1} \) packets that were recoded by node \(i - 1 \).

- **Theorem**

 The code described is capacity achieving. That is, packets are transmitted from the source to the node \(i \) at a rate equal to \(\min_{1 \leq j \leq i} (1 - \epsilon_j) \).
Conclusion

Have shown:

- Min Cut Capacity to every node.
- Ratelessness
- Order optimal delay
- Low overhead
- Low complexity.
- On arbitrarily large tree networks!
Thanks

Thank you!

For more details, please
(a) Talk to me, or
(b) Read a preprint from
http://decision.csl.uiuc.edu/~gummadi2/papers/fountain.pdf