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Introduction

• Wireline: Some well understood facts:

• Unicast: Information flow = Commodity Flow
• Role of network coding strictly for more general settings.

• Wireless: Network Coding seems to have a role even for
unicast, which is what we would like to explore further.

• Two issues distinguish wireless from a wireline setting:
• Interference: A challenge to be overcome
• Local Broadcast of the medium: An opportunity to be

exploited ← This will be the focus.

§ Scheduling issues typically address interference by preventing
interfering links operating together.
§ Given a schedule to work with, how do we exploit the local

broadcast?



A Wireless Erasure Network Model

• Problem Model: Unicast, Lossy (erasure) Network

• χ(i ,Z , t) - denotes success from i to Z at time t

• Capacity Constraint: E [χ(i ,Z , t)] = c(i ,Z )
- Rate at which exactly the nodes in Z receive transmission
Example: p(i , j) =

∑
Z :j∈Z c(i ,Z )



A Wireless Erasure Network Model

Problem Model: Unicast, Lossy (erasure) Network

C (A) =
∑

i∈A,Z⊆N (i),Z∩Ā 6=φ

c(i ,Z )

Cut Value: The sum of the capacities of all hyperedges that have
an overlap across the cut: i.e. rate at which at least one neighbor
across the cut hears.

• Min Cut achieved with linear coding: [DGPHE06]



A general max flow formulation

max
∑

p∈P xp

( Max sum of flow along all paths p ∈ P)

Subject to:∑
j :j∈Z r(i , j ,Z ) ≤ c(i ,Z )

(Broadcast flow split among constituent edges)∑
{p∈P:(i ,j)∈p} xp ≤

∑
{Z :j∈Z} r(i , j ,Z )

(Classical flow constraint for each edge , (i , j) ∈ E )

GMC = min
A,Ā

∑
i∈A,Z⊆N (i),Z∩Ā 6=φ

c(i ,Z )



Some Fundamental Observations

• Theorem: Max Flow is equal to GMC . Implies coding not
necessary, if throughput is the sole concern.

• Theorem: Backpressure scheme achieves GMC.

Remarks:

• The fact that coding is not necessary was also established
previously by [Smith,Hassibi 08] without using the max flow
interpretation.

• Backpressure schemes for this model were studied by [Neely
09], but they weren’t related to the max flow min cut duality
and consequently, the information theoretic min cut.

• Does coding have a role here beyond throughput?



Feedback Overhead for Routing policies

The Backpressure policy for wireless local broadcast:
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Feedback Overhead for Routing policies

The Backpressure policy for wireless local broadcast:

• Dynamic Routing Choices need to be made by conferencing
among relays.

• Potential role of coding in solving this distributed
synchronization problem.

• Perhaps there is some routing policy can avoid this overhead
while still achieving a good throughput. . .



Feedback Independent Routing

Key Issues:

• Characterize reasonable “Feedback constraints”

• What is the constrained capacity?

• Evaluate the merits of routing versus coding under such
constraints.



Feedback Independent Routing



Feedback Independent Routing

FIR constraint for node S : For any disjoint sets of relays A,B,
conditioned on ri (p) = 1 ∀i ∈ A we need: {r∗i (p) : i ∈ A} and
{ri (p) : i ∈ B} are independent

• Informally: Each relay has to make distributed decisions on
whether to forward a packet without consulting about the
packet’s receipt at other relays



Some schemes that satisfy FIR

• Send each packet to a specific relay. i.e. if a relay other than
the intended one receives the packet, it discards the packet:
used in practice, does not exploit local broadcast.

• Opposite extreme: Flooding. i.e., each relay keeps all the
packets it receives and makes a random selection of a subset
from it, as large as its rate to the destination can support.

• A generalization of the extremes: Tag a fraction t(Z ) of the
packets with set Z . Upon receipt of a packet tagged with Z ,
a relay discards the packet unless it is a member of Z .



Characterizing the Capacity under FIR (CFIR)

A class of feasible schemes under FIR constraint:

max
∑

Z ,Z ′⊆[m]:Z∩Z ′ 6=φ

t(Z )c(Z ′)

Subject to:∑
Z⊆[m]

t(Z ) ≤ 1; t(Z ) ≥ 0 ∀Z ⊆ [m]

p(S , i)

 ∑
Z⊆[m]:i∈Z

t(Z )

 < p(i ,D) ∀i ∈ [m]

• Above LP represents the throughput of blind feedforward
‘tagging schemes’ where t(Z ) fraction of packets are tagged
with destination Z .



Capacity under Feedback Independent Routing (CFIR)

• Theorem: Given any policy that satisfies FIR, there exists a
blind tagging policy that matches its throughput.

A simple application of the above theorem:

• CFIR can be strictly less than GMC .

• GMC = 3/4, but CFIR = 5/8 (by evaluating the LP)



Limitations of FIR

• An extreme case: (p(S , i) = 1 ∀i ∈ [m]) and (p(i ,D) = 1
m )

• GMC is 1 and random linear coding can achieve this unit rate.

• Consider m packets in total received by all relays in m time
slots.

• One expected onward transmission opportunity per relay per m
total slots. Without coordination, expected number of distinct
packets delivered u m(1− (1− 1

m )m) u 0.63m for large m.

• General case with asymmetry and arbitrary min cuts?



Applications of CFIR characterization

• Theorem: As long as the losses to relays are independent, for
arbitrary configurations of rates and their corresponding min
cut values, we have:

CFIR ≥ 1− e−GMC ≥ 0.63

• In fact, as GMC → 0, CFIR
GMC ≥

1−e−GMC

GMC → 1

• If the given network is lossy, extensive coordination using
feedback or using coding can only give marginal relative
benefit.



Independent Relay Losses

GMC = min
A⊆[m]

1−
∏

i∈[m]/A

(1− p(S , i)) +
∑
i∈A

p(i ,D)


Flooding policy, Pf : each relay selects a random subset to forward.

C (PF ) = 1−
∏

i∈[m]

(1−min(p(S , i), p(i ,D)))

Theorem: C (PF ) ≥ 1− e−GMC



Dependent Relay Losses: A special example

GMC = 1, but for appropriate p (say, 1− 1√
m

), CFIR goes to 0.



Dependent Relay Losses

• CFIR
GMC not lower bounded by any positive quantity in general.
Shown on the example network by evaluating a bound on the
CFIR based on its LP characterization.

• This bottleneck situation roughly represents the case where a
large proportion of the packets at each relay are commonly
received, but this set of commonly received packets turns out
to be a small proportion of the overall set of packets in
transit. Most of the relays end up wasting their resources on
what are mostly duplicate transmissions.

• An Implication: Network coding is essential to overcome the
distributed synchronization problem without extensive
feedback signalling in the general case.



Conclusions

• Because of max flow min cut duality, dynamic opportunistic
routing schemes can exploit local broadcast as effectively as
network coding does.

• If relays have to make distributed dynamic routing decisions
however, the throughput achieved by routing policies strictly
decreases.

• The decrease in throughput is bounded if the link losses are all
independent, but it could become arbitrarily bad when there
are dependencies among link losses.

• The role of network coding for wireless unicast is to solve the
distributed synchronization problem without extensive
feedback, rather than as a way to increase the throughput by
exploiting local broadcast.


