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Network Capacity: Basic Problem

• Model of Wireless Network

1. Directed Graph
2. Protocol Model (i.e. no Coding in network, or any Information

theoretic schemes, no exploiting of broadcast multipath, etc.)
3. Interference constraints: Specified via link pair conflicts (Ex:

k-hop, node exclusive, etc.)

• Given: (i) m S-D pairs; (ii) an m−dim rate vector, r
Question: Does r ∈ F? (i.e., can we satisfy the following two
constraints simultaneously?)

1. m flows - i th flow of value ri between S-D pair i (routing)
2. Sum of flows convex combination of non-conflicting link

subsets. (scheduling)
(i.e., is there a TDMA scheme which supports the sum of
flows?)
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Network Capacity: Basic Problem

We say end to end rate vector, (0.6, 0.1, 0.1, 0.6) is feasible



Background on rate feasibility

• Node exclusive(Matching) constraints: polynomial algorithms
exist for arbitrary graphs: “ Link scheduling in polynomial
time”, Hajek, Sasaki ’88.

• Wireless: Secondary interference constraint models intractable
even for link rate feasibility in general. Arikan,’84

• Given end-to-end rates and a flow routing decomposition,
end-to-end feasibility reduces to link rate feasibility

• Our previous work on single hop: “Feasible Rate Allocation in
Wireless Networks”, INFOCOM ’08 provides approximate poly
time oracles for link rate feasibility in restricted graphs.
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End-to-end feasibility

• End-to-end problem: Does there exist a routing scheme which
leads to feasible link rates?

• Previous Multi hop Literature considers:

1. Scaling laws: i.e., behavior in the limit as network size grows
to infinity.

2. One Dimensional projections: Maximal per node throughput,
transport capacity.

Our Motivation: Given a specific network, obtain an oracle for
computing feasibility.

• Our Result: Polynomial algorithm for n2 dimensional unicast
capacity upto arbitrary accuracy when network graph allows
for MWIS approximation (in many practical situations, it does)
Algorithm declares in poly time:
‘YES’, if (1 + 2ε)r ∈ F
‘NO’ if (1− 2ε)r /∈ F
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Basic Approach

• Algorithm approach: “Simulate” “ε-MWIS
routing/scheduling” and quantify relation between queue
lengths and approximate feasibility

• “ε-MWIS routing/scheduling”: Backpressure scheme of
Tassiulas-Ephremides with an ε− approximation to MWIS
used in place of exact MWIS.

Recall: Markov Chain for i.i.d. packet arrivals stable under
“MWIS routing/scheduling” iff r ∈ F ; “Stability
properties. . .”, Tassiulas, Ephremides, TAC ’92

• Caveat: Stability is only existential statement. But, how long
do we need to observe queue lengths and how do we make the
call on feasibility? (in poly time)
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Challenges

• Key issues to be addressed:

(i) Does approximate MWIS ⇒ approximate stability?
(ii) What is approximately stable?
(iii) Can we declare output in poly time?

• Notion of approximation:
• Assume r avoids an ε− boundary of the feasibility region and

declare the right answer
i.e., (1 + 2ε)r ∈ F or (1− 2ε)r /∈ F for some known ε > 0.

• Alternate view. Assume no priors on r, but will always declare
correctly the feasibility of some vector in (1± ε)r.

• Simulation algorithm with random arrivals? Bounds can be
obtained only on equilibrium queue lengths (eg: via methods
like Foster’s Criterion/Moment bounds)

• Deterministic real valued queue length process ⇒ explicit
bounds
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Key Results

Simulate network with deterministic real valued queue lengths and
an ε−MWIS. Then we obtain the following claims on the transient
behavior of the approximate max weight scheduling:

• Lemma

(1 + 2ε)r ∈ F ⇒ qmax(t) ≤ p1(n)
ε ∀t

• Lemma

(1− 2ε)r /∈ F ⇒ qmax(t) ≥ ε2

p2(n) t ∀t

• Decision in at most p1(n)p2(n)
ε3

time slots (unless r falls in the
2ε-boundary).

• t time slots of ε/2-MWIS ⇒ Feasibility of (1± ε(t))r where

ε(t) = 2 min

(√
qmax (t)p2(n)

t , p1(n)
qmax (t)

)
when ε < ε(t) < 1/2

Assured that ε(t) decreases below any ε > 0 in poly time.
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Comments

• p1(n) = n7.5, p2(n) = n2, but the algorithm could be
potentially more efficient in practice than the guarantees
provided.
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The approximability of MWIS

• Is this too strong an assumption for practical use?

• A sufficient condition for MWIS approximability: “polynomial
growth”. [Jung, Shah 08]

• Graphs with polynomial growth:

1. Geometric random graph with O(log n) communication radius
2. Arbitrary geographic graphs with bounded density and

communication radius
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A Special case with Exact algorithm

• Motivated by IVHS applications.

• Bounded radius of communication and interference.

• End-to-end rate feasibility can be posed as a polynomial LP
by extending our previous work on link feasibility based on a
fractional coloring algorithm.



Conclusion

• We obtain a polynomial feasibility oracle for any given
network under reasonable hypothesis.

• Existing literature considers the problem of understanding the
capacity for an ensemble of networks with a probabilistic
distribution and as the network size goes to infinity (scaling
laws).

• A byproduct of our work: Transient analysis of the
approximate max weight scheduling algorithm for
deterministic arrivals.
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