Optimal Control of a Broadcasting Server

Ramakrishna Gummadi

CDC 2009 Presentation

ECE Illinois

December 16th, 2009
Outline of the Talk

- **Introduction**
 - The Basic Broadcast Server Queueing Model
 - Motivation for studying the Model

- **Single Queue Problem**
 - Objective and the convex cost model with broadcast costs
 - Main Result: Threshold property of the optimal control
 - Proof Outline

- **Two Queues**
 - Cost Model
 - Switch Curve Property of the Optimal Control

- **Conclusion and Further Work**
The Basic Broadcast Queueing Model

- Continuous time system
- Poisson Arrivals of rate λ
- Exponential Server of rate μ
- Each service clears the entire queue
The Basic Broadcast Queueing Model

- Continuous time system
- Poisson Arrivals of rate λ
- Exponential Server of rate μ
- Each service clears the entire queue
The Basic Broadcast Queueing Model

- Continuous time system
- Poisson Arrivals of rate λ
- Exponential Server of rate μ
- Each service clears the entire queue
The Basic Broadcast Queueing Model

- Continuous time system
- Poisson Arrivals of rate λ
- Exponential Server of rate μ
- Each service clears the entire queue
The Basic Broadcast Queueing Model

- Continuous time system
- Poisson Arrivals of rate λ
- Exponential Server of rate μ
- Each service clears the entire queue
The Basic Broadcast Queueing Model

§ Continuous time system

§ Poisson Arrivals of rate λ

§ Exponential Server of rate μ

§ Each service clears the entire queue
The Basic Broadcast Queueing Model

- Continuous time system
- Poisson Arrivals of rate λ
- Exponential Server of rate μ
- Each service clears the entire queue
Motivation for studying this model

Broadcast Scheduling

- \(\Lambda_1 \)
- \(\Lambda_2 \)
- \(\ldots \)
- \(\Lambda_n \)

- Each link rate without interference is very high
- Schedule them so as to minimize cost given as some function of the queue sizes
Motivation for studying this model

§ Broadcast Scheduling

- Λ_1
- Λ_2
- \ldots
- Λ_n

§ Batch processing systems with large batch size
Motivation for studying this model

- Broadcast Scheduling
 - \mathbf{A}_1
 - \mathbf{A}_2
 - \mathbf{A}_n

- Batch processing systems with large batch size

- High Interference Scheduling - WPAN
 - n mutually interfering links in close proximity
 - Each link rate without interference is very high
 - Schedule them so as to minimize cost given as some function of the queue sizes
Objective: Single Queue

- \(c(x) \) is a cost rate for holding \(x \) customers in the system
- \(c_s \) is an additional cost per broadcast
- At state \(x \) we operate the server at rate \(w(x)\mu \) for \(0 \leq w(x) \leq 1 \)
- Describe the optimal control \(w(x) \) to minimize:

\[
E^w_x \int_0^\infty e^{-\alpha t} c(x_t) \, dt + \sum_{k=1}^\infty e^{-\alpha \tau_k} \mathbb{I}\{x_{k-1} \neq 0 \text{ and } x_k = 0\} c_s
\]
Cost Models

- Previous work on batch service models shows that \(w(x) \) is threshold type for monotone costs, \(c(x) \).

- Current Work: any convex \(c(x) \).

- **Practical motivation** for convex cost on single queue:
 1. p2p system with strategic cost model abstraction
 2. Heuristics to decompose multiple queue systems to single queue.
Main Result: Single Queue

Theorem

A threshold policy is optimal for discounted infinite horizon cost for convex cost rate $c(x)$ and constant service cost
Main Result: Single Queue

Theorem

A threshold policy is optimal for discounted infinite horizon cost for convex cost rate $c(x)$ and constant service cost.

- Minimize

$$E^w_x \int_0^\infty e^{-\alpha t} c(x_t) \, dt + \sum_{k=1}^{\infty} e^{-\alpha \tau_k} \mathbb{1}\{x_{k-1} \neq 0 \text{ and } x_k = 0\} c_s$$
Theorem

A threshold policy is optimal for discounted infinite horizon cost for convex cost rate \(c(x) \) and constant service cost

- Minimize

\[
E_x^w \int_0^\infty e^{-\alpha t} c(x_t) \, dt + \sum_{k=1}^\infty e^{-\alpha \tau_k} \mathbb{I}\{x_{k-1} \neq 0 \text{ and } x_k = 0\} c_s
\]

- Equivalent to a discrete time problem for minimizing:

\[
U^w(x) = E_x^w \sum_{k=0}^\infty \beta^k (c(x_k) + c_s \mathbb{I}\{x_{k-1} \neq 0, x_k = 0\})
\]
Single Queue

- Dynamic programming operator, \mathcal{T} defined as:

$$\mathcal{T} f(x) = c(x) + \beta \left\{ \lambda f(x+1) + \mu \min(f(x), f(0) + c_s) \right\}$$
Single Queue

- Dynamic programming operator, \(\mathcal{T} \) defined as:

\[
\mathcal{T} f(x) = c(x) + \beta \{ \lambda f(x + 1) + \mu \min(f(x), f(0) + c_s) \}
\]

- Optimal Value function:

\[
V(x) = \inf_{E_x^u} \sum_{k=0}^{\infty} \beta^k (c(x_k) + c_s \mathbb{1}_{\{x_{k-1} \neq 0, x_k = 0\}})
\]
Single Queue

• Dynamic programming operator, \mathcal{T} defined as:

\[
\mathcal{T} f(x) = c(x) + \beta \{ \lambda f(x + 1) + \mu \min(f(x), f(0) + c_s) \}
\]

• Optimal Value function:

\[
V(x) = \inf_u E_x^u \sum_{k=0}^{\infty} \beta^k (c(x_k) + c_s \mathbb{I}\{x_{k-1} \neq 0, x_k = 0\})
\]

• From Dynamic Programming argument, V satisfies:

\[
V = \mathcal{T} V
\]
Proof of Threshold Optimality

For a given control \(w(x) \), the value function

\[
U^w(x) = E_x^w \sum_{k=0}^{\infty} c(x_k) \beta^k
\]

satisfies a fixed point eqn for:

\[
T^w f(x) = c(x) + \beta(\lambda f(x+1) + \mu(w(x)(f(0)+c_s) + (1-w(x))f(x)))
\]

Theorem

Let \(U_l \) be the value function for threshold \(l \) policy. If

\[
U_l(l - 1) \leq U_l(0) + c_s < U_l(l),
\]

then \(U_l \) is quasiconvex

Definition

A function \(f \) on \(Z_+ \) is quasiconvex (unimin) if \(f(x + 1) - f(x) \geq 0 \)

for all \(x > y \) whenever \(f(y + 1) - f(y) > 0 \).
Proof of Threshold Optimality

• **Suppose** we could find an l^* for which:
 1. U_{l^*} is quasiconvex
 2. $U_{l^*}(l^* - 1) \leq U_{l^*}(0) + c_s < U_{l^*}(l^*)$

• This implies:

 $U_{l^*}(x) \begin{cases}
 \leq U_{l^*}(0) + c_s & \text{if } x \leq l^* - 1 \\
 > U_{l^*}(0) + c_s & \text{if } x \geq l^*
 \end{cases}$

• Then, $f(x) = U_{l^*}(x)$ is a solution to the fixed point equation for optimal DP operator:

 $Tf(x) = c(x) + \beta \{ \lambda f(x+1) + \mu \min(f(x), f(0) + c_s) \}$

But we only need to look for an l^* for which condition (2) holds since (2) \Rightarrow (1), by theorem.
Proof of Threshold Optimality

- **Suppose** we could find an l^* for which:
 1. U_{l^*} is quasiconvex
 2. $U_{l^*}(l^* - 1) \leq U_{l^*}(0) + c_s < U_{l^*}(l^*)$

- This implies:

\[
U_{l^*}(x) \begin{cases}
\leq U_{l^*}(0) + c_s & \text{if } x \leq l^* - 1 \\
> U_{l^*}(0) + c_s & \text{if } x \geq l^*
\end{cases}
\]
Proof of Threshold Optimality

- **Suppose** we could find an l^* for which:
 1. U_{l^*} is quasiconvex
 2. $U_{l^*}(l^* - 1) \leq U_{l^*}(0) + c_s < U_{l^*}(l^*)$

- This implies:
 \[
 U_{l^*}(x) \begin{cases}
 \leq U_{l^*}(0) + c_s & \text{if } x \leq l^* - 1 \\
 > U_{l^*}(0) + c_s & \text{if } x \geq l^*
 \end{cases}
 \]

- Then, $f(x) = U_{l^*}(x)$ is a solution to the fixed point equation for optimal DP operator:
 \[
 \mathcal{T} f(x) = c(x) + \beta \{ \lambda f(x + 1) + \mu \min(f(x), f(0) + c_s) \}
 \]
Proof of Threshold Optimality

• **Suppose** we could find an l^* for which:
 1. U_{l^*} is quasiconvex
 2. $U_{l^*}(l^* - 1) \leq U_{l^*}(0) + c_s < U_{l^*}(l^*)$

• This implies:

$$U_{l^*}(x) \begin{cases}
\leq U_{l^*}(0) + c_s & \text{if } x \leq l^* - 1 \\
> U_{l^*}(0) + c_s & \text{if } x \geq l^*
\end{cases}$$

• Then, $f(x) = U_{l^*}(x)$ is a solution to the fixed point equation for optimal DP operator:

$$\mathcal{T} f(x) = c(x) + \beta \{ \lambda f(x + 1) + \mu \min(f(x), f(0) + c_s) \}$$

§ But we only need to look for an l^* for which condition (2) holds since $(2) \Rightarrow (1)$, by theorem.
Proof of Threshold Optimality

Lemma

\[l^* = \min \{ l : U_l(l) > U_l(0) + c_s \} \text{ satisfies } (2) \]

Proof: Suppose not. \(U_{l^*}(l^* - 1) > U_{l^*}(0) + c_s \). Then:
Proof of Threshold Optimality

Lemma

\[l^* = \min \{ l : U_l(l) > U_l(0) + c_s \} \text{ satisfies (2)} \]

Proof: Suppose not. \(U_{l^*}(l^* - 1) > U_{l^*}(0) + c_s \). Then:

- Policy iteration on decision at \(l^* - 1 \) \(\Rightarrow \) threshold \(l^* - 1 \) strictly improves threshold \(l^* \) policy.
Proof of Threshold Optimality

Lemma

\[l^* = \min\{l : U_l(l) > U_l(0) + c_s\} \text{ satisfies } (2) \]

Proof: Suppose not. \(U_{l^*}(l^* - 1) > U_{l^*}(0) + c_s \). Then:

- Policy iteration on decision at \(l^* - 1 \) \(\Rightarrow \) threshold \(l^* - 1 \) strictly improves threshold \(l^* \) policy

- which would be a contradiction, unless:
 \[U_{l^* - 1}(l^* - 1) > U_{l^* - 1}(0) + c_s \]
Proof of Threshold Optimality

Lemma

\[l^* = \min\{l : U_l(l) > U_l(0) + c_s\} \text{ satisfies (2)} \]

Proof: Suppose not. \[U_{l^*}(l^* - 1) > U_{l^*}(0) + c_s \]. Then:

- Policy iteration on decision at \(l^* - 1 \) \(\Rightarrow \) threshold \(l^* - 1 \) strictly improves threshold \(l^* \) policy

- which would be a contradiction, unless:
 \[U_{l^* - 1}(l^* - 1) > U_{l^* - 1}(0) + c_s \]

- \(\ldots \) which contradicts definition of \(l^* \)
Two queues

- Assume cost, \(c(x_1, x_2) \) is monotone and has no service costs
- \(n \) step value function \(V_n \) is recursively given by:

\[
V_{n+1}(x_1, x_2) = c(x_1, x_2) \beta \lambda_1 V_n(x_1 + 1, x_2) + \lambda_2 V_n(x_1, x_2 + 1) + \\
\mu \min(V_n(x_1, 0), V_n(0, x_2), V_n(x_1, x_2))
\]
Lemma

V_n is increasing. i.e., if (x_1, x_2) and (y_1, y_2) are such that $x_1 \leq y_1$ and $x_2 \leq y_2$ then $V_n(x_1, x_2) \leq V_n(y_1, y_2)$

The optimal control u_n is:

$$u_n(x_1, x_2) = \begin{cases}
1, & \text{if } V_n(x_1, 0) \leq V_n(0, x_2) \\
2, & \text{otherwise.}
\end{cases}$$
The optimal control with n steps to go is given by a switch curve:

$$u_n(x_1, x_2) = \begin{cases}
1, & \text{if } x_2 \geq s_n(x_1) \\
2, & \text{otherwise.}
\end{cases}$$

where

$$s_n(x) = \min\{y : V_n(x, 0) \leq V_n(0, y)\}$$
Further Work: The general problem for $n > 2$ queues

- An index rule is given by n functions ψ_1, \ldots, ψ_n such that the control is given as:

$$u(x_1, \ldots, x_n) = \arg \max_{i \in [n]} \{ \psi_i(x_i) \}$$

- Can the optimal control be described by index rules?

- Approximate algorithms using index policies
 - Longest queue scheduling corresponds to $\psi_i(x) = x$
 - LWF scheduling, which has been found to be ‘competitive’ in CS literature corresponds to using an index rule where:

$$\psi_i(x) = \frac{x}{\sqrt{\lambda_i}}$$
Thank you!